Math, asked by harshit993, 1 year ago

p(x)=kx^3+x^2-22x-21. (x+3)​


rahman786khalilu: is (x+3) factor

Answers

Answered by rahman786khalilu
0

Step-by-step explanation:

p(-3)=k(-27)+9+22(3)-21=0

-27k+9+66-21=0

-27k=-54

k=2

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

∵ x + 3 is a factor of polynomial p(x) = kx² + x² - 22x - 21

∴ By factor theorem, p(-3) = 0

Now, substituting the value of x

p(x) = kx² + x² - 22x - 21

p(-3) = k(-3)³ + (-3)² - 22(-3) - 21 = 0

⇒ -27k + 9 + 66 - 21 = 0

⇒-27 + 54 = 0

⇒ 27k = 54

⇒ k = 54 ÷ 27

⇒ k = 2 Ans.

Similar questions