Math, asked by hemuhimi, 10 months ago

p(x)=x⁴+ax³+bx²+cx+d
p(1)=10, p(2)=20 p(3)=30
Find p(12)+p(-8)/10​=?

Answers

Answered by Anonymous
5

Step-by-step explanation:

P(x) = x⁴ + a x³+b x² + c x + d 

If p(1) = p(2) = p(3) = 0, it means that (x-1) , (x-2) , (x-3) are factors of P(x). Let the last factor of P(x) be (x - m).  Hence

p(x) = x⁴ + a x³+b x² + c x + d = (x-1) (x - 2 ) ( x - 3 ) (x - m)

comparing the constant term = d = 6m  => m = d/6

p(4) + p(0) = 3 * 2 * 1 * (4 - m) + (-1 * -2 * -3 * -m)  

                  = 24 - 6 m + 6m = 24

Answered by Anonymous
0

Answer:

P(x) = x⁴ + a x³+b x² + c x + d 

If p(1) = p(2) = p(3) = 0, it means that (x-1) , (x-2) , (x-3) are factors of P(x). Let the last factor of P(x) be (x - m).  Hence

p(x) = x⁴ + a x³+b x² + c x + d = (x-1) (x - 2 ) ( x - 3 ) (x - m)

comparing the constant term = d = 6m  => m = d/6

p(4) + p(0) = 3 * 2 * 1 * (4 - m) + (-1 * -2 * -3 * -m)  

                 = 24 - 6 m + 6m = 24

Similar questions