पाइथागोरस प्रमेय को सिद्ध कीजिए ?
Answers
Answer:
It is right answer for your question
Answer:
इस अनुच्छेद को विकिपीडिया लेख Pythagorean theorem के इस संस्करण से अनूदित किया गया है।
बौधायन का प्रमेय: समकोण त्रिभुज की दो भुजाओं की लम्बाइयों के वर्गों का योग कर्ण की लम्बाई के वर्ग के बराबर होता है।
पाइथागोरस प्रमेय (या, बौधायन प्रमेय) यूक्लिडीय ज्यामिति में किसी समकोण त्रिभुज के तीनों भुजाओं के बीच एक सम्बन्ध बताने वाला प्रमेय है। इस प्रमेय को आमतौर पर एक समीकरण के रूप में निम्नलिखित तरीके से अभिव्यक्त किया जाता है-
जहाँ c समकोण त्रिभुज के कर्ण की लंबाई है तथा a और b अन्य दो भुजाओं की लम्बाई है। पाइथागोरस यूनान के गणितज्ञ थे। परम्परानुसार उन्हें ही इस प्रमेय की खोज का श्रेय दिया जाता है[1]। हालांकि यह माना जाने लगा है कि इस प्रमेय की जानकारी उनसे पूर्व तिथि की है। भारत के प्राचीन ग्रंथ बौधायन शुल्बसूत्र में यह प्रमेय दिया हुआ है। काफी प्रमाण है कि बेबीलोन के गणितज्ञ भी इस सिद्धांत को जानते थे। इसे 'बौधायन-पाइथागोरस प्रमेय' भी कहते हैं।
सूत्र के रूप में
अगर हम कर्ण की लंबाई को c और अन्य दो भुजाओं की लंबाई को a और b लेते हैं, तो प्रमेय को निम्नलिखित समीकरण के रूप में व्यक्त किया जा सकता है:
या,
यदि c तथा एक भुजा का मान पहले से दिया गया है और तीसरी भुजा की लंबाई निकालनी हो, तो निम्नलिखित समीकरण का उपयोग किया जा सकता है :
या
यह समीकरण समकोण त्रिकोण के तीनों भुजाओं के बीच एक सरल सम्बन्ध प्रदान करता है। इस प्रमेय का सामान्यीकरण 'कोज्या नियम' (Cosine rule) कहलाता है जिसकी सहायता से किसी भी त्रिकोण के तीसरी भुजा की लम्बाई की गणना की जा सकती है यदि शेष दो भुजाओं की लंबाई और उनके बीच के कोण की माप दी गयी हो।
प्रमाण
यह एक ऐसा प्रमेय है जिसके अन्य प्रमेयों की तुलना में सम्भवतः सर्वाधिक प्रमाण ज्ञात हैं (द्विघाती पारस्परिकता का नियम भी इस गौरव के लिए प्रतियोगी रह चुका है)। एलीशा स्कॉट लूमिस द्वारा रचित पायथागॉरियन थिअरम किताब में, 367 प्रमाण दिए गए हैं।
समरूप त्रिभुज के उपयोग से प्रमाण
समरूप त्रिभुज के उपयोग द्वारा प्रमाण
बौधायन प्रमेय के अधिकांश प्रमाणों की तरह, यह दो समरूप त्रिभुजों की भुजाओं के समानुपाती होने के गुण पर आधारित है।
माना ABC एक समकोण त्रिभुज है, जिसमें कोण C समकोण है, जैसा आकृति में दिखाया गया है। हम C बिंदु से कर्ण पर लम्ब डालते हैं और भुजा AB के साथ उस लम्ब की लम्बाई H हैं। यह नया त्रिकोण ACH हमारे त्रिकोण ABC के समरूप है, क्योंकि उन दोनों में ही समकोण है (ऊंचाई की परिभाषा के द्वारा) और A कोण उनका हिस्सा है। इसका मतलब है की तीसरा कोण भी दोनों त्रिभुजों में समान है। इसी आधार पर त्रिभुज CBH भी ABC के समरूप है। इन समरूपताओं से हमें दो समानुपात प्राप्त होते हैं:
जैसे
तथा
इन्हें ऐसे भी लिखा जा सकता है
इन दो समीकरणों का संक्षेप करने पर,
अन्य शब्दों में, बौधायन प्रमेय:
यूक्लिड के प्रमाण
यूक्लिड के तत्वों में प्रमाण
यूक्लिड के तत्वों में, पुस्तक 1 का प्रस्ताव 47, बौधायन प्रमेय निम्नलिखित लाइनों के साथ एक तर्क से साबित होता है।A, B, C को समकोण त्रिकोण के कोने मानते हैं, जिसमें समकोण A पर होगा. A से कर्ण के विपरीत एक अधोलंब छोडें वर्ग में कर्ण पर.वो रेखा कर्ण पर वर्ग को दो आयातों में विभाजित करती है, प्रत्येक का समान क्षेत्र है क्यूंकि दोनों में से एक पैरों में वर्
here is ur answer dear hope it's help u