Math, asked by rahulyadav10941, 3 months ago

प्रश्न 04. सम्मिश्र संख्या 7+ 24 I
का वर्गमूल ज्ञात कीजिए ।
Find the square root of the complex number 7+24 i​

Answers

Answered by amitnrw
2

Given :  7+24 i​

To Find : square  root

Solution :

Let say square root = a + ib

a + ib = √(7 + 24 i)

Squaring both sides

=> a²  + (ib)² + 2abi  = 7 + 24i

=> a² - b²  + 2abi  = 7 + 24 i

2ab = 24

=> ab = 12

12 = 1 * 12  = 2 * 6 = 3 * 4

a² - b² = 7

=> (a + b)(a - b) = 7

a = 4 and b = 3 will satisfy this

4 + 3i   is square root   7+ 24 i

or other way

(a² + b²)²  = (a² - b²)² + 4a²b²

=> (a² + b²)²  = (7)² + 24²         4a²b²= (2ab)²

=> a² + b² = 25

a² + b² = 25

a² - b² = 7

=> a²  = 16  and b²  = 9

=> a = ± 4  and b = ±3

4 + 3i  and -4 - 3i     is square root   7+ 24 i

Learn More:

Conjugate of the surd root 3 - root 5 is - Brainly.in

brainly.in/question/8946703

Every real number is a complex number. Proof - Brainly.in

brainly.in/question/18312643

Answered by Anonymous
48

Answer:

 \bf \underline{  \: solution} \:  \\  \\  \\  \bf \: we \: have \:  \\  \\  \\  \bf \sqrt{7 + 24i =  {x}^{2} }  -  {y}^{2}  + 2xyi \\  \\  \\  \bf \:  {x}^{2}  -  {y}^{2}  = 7   \:  \:  \:  {x}^{2}  -  \frac{144}{ {x}^{2} }  = 7 \\  \\  \\   \bf {x}^{4}  -  {7x}^{2}  - 144 = 0 \\  \\  \\  \bf \:  {x}^{2} ( {x  }^{2}  - 16) + a( {x}^{2}  - 16) = 0 \\  \\  \\  \bf \: x =  \pm \: y \\  \\  \\    \therefore \bf \: x =  \frac{12}{x}  \\  \\  \\  \bf \: y = 3 \:  \:  \:  \:  - 3 \\  \\  \\  \bf \therefore x = 4 \:  \:  \: y = 3 \\  \\  \\  \bf \:  \: x =  - 4 \: y =  - 3 \\  \\  \\  \\  \bf \:  \sqrt{7 + 24i}  =  \pm4 + 3i \:  \\  \\  \\  \bf \: hence \: is \: the \: answer

Similar questions