प्रश्न ख. पक्षियों को सोने की कटोरी में रखी मैदा से भी अधिक प्रिय क्या है ?
Answers
Answer:
Pakshiyo ko sone ke katori me rakhi maida se bhi adhik priy uski aazadi aur swatantrata hai or yah iksha hai ki vah aazadi se gagan me apne pank kholkar udey.
Answer:
Priceofcomputerafter6year=£1977.1
\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}
Step−by−stepexplanation:
\begin{gathered} \green{\underline \bold{Given :}} \\ \tt: \implies Price \: of \: computer = \pounds 2100 \\ \\ \tt: \implies Depreciate \: rate\% = 1\% \\ \\ \red{\underline \bold{To \: Find :}} \\ \tt: \implies Price \: of \: computer \: after \: 6 \: year =? \end{gathered}
Given:
:⟹Priceofcomputer=£2100
:⟹Depreciaterate%=1%
ToFind:
:⟹Priceofcomputerafter6year=?
• According to given question :
\begin{gathered} \bold{As \: we \: know \: that : } \\ \tt: \implies 1st \: year \: depreciate \: price = 2100 - 2100 \: of \: 1\% \\ \\ \tt: \implies 1st \: year \: depreciate \: price =2100 - 2100 \times \frac{1}{100} \\ \\ \tt: \implies 1st \: year \: depreciate \: price =2100 - 21 \\ \\ \tt: \implies 1st \: year \: depreciate \: price = \pounds 2079 \\ \\ \bold{For \: 2nd \: year : } \\ \tt: \implies 2nd \: year \: depreciate \: price =2079 - 1\% \: of \: 2079 \\ \\ \tt: \implies 2nd \: year \: depreciate \: price = 2079 - \frac{1}{100} \times 2079 \\ \\ \tt: \implies 2nd\: year \: depreciate \: price =2079 - 20.79 \\ \\ \tt: \implies 2nd\: year \: depreciate \: price = \pounds 2058.21 \\ \\ \bold{Similarly : } \\ \tt: \implies 3rd\: year \: depreciate \: price =2058.21 - 1\% \: of \: 2058.21\end{gathered}
Asweknowthat:
:⟹1styeardepreciateprice=2100−2100of1%
:⟹1styeardepreciateprice=2100−2100×
100
1
:⟹1styeardepreciateprice=2100−21
:⟹1styeardepreciateprice=£2079
For2ndyear:
:⟹2ndyeardepreciateprice=2079−1%of2079
:⟹2ndyeardepreciateprice=2079−
100
1
×2079
:⟹2ndyeardepreciateprice=2079−20.79
:⟹2ndyeardepreciateprice=£2058.21
Similarly:
:⟹3rdyeardepreciateprice=2058.21−1%of2058.21
\begin{gathered} \\ \tt: \implies3rd \: year \: depreciate \: price =2058.21 - 20.5821 \\ \\ \tt: \implies 3rd \: year \: depreciate \: price =\pounds 2037.6279 \\ \\ \bold{For \: 4th \: year : } \\ \tt: \implies 4th \: year \: depreciate \: price = 2037.6279 - 20.376279 \\ \\ \tt: \implies 4th \: year \: depreciate \: price =\pounds 2017.251621 \\ \\ \bold{For \: 5th \: year : } \\ \tt: \implies5th \: year \: depreciate \: price =2017.251621 - 20.17251621 \\ \\ \tt: \implies 5th \: year \: depreciate \: price =\pounds 1997.07910479 \\ \\ \bold{For \: 6th \: year : }\\ \tt: \implies 6th \: year \: depreciate \: price = 1997.07910479 - 19.9707910479 \\ \\ \tt: \implies 6th\: year \: depreciate \: price =1977.1083077421 \\ \\ \green{\tt: \implies 6th\: year \: depreciate \: price = \pounds 1977.1}\end{gathered}
:⟹3rdyeardepreciateprice=2058.21−20.5821
:⟹3rdyeardepreciateprice=£2037.6279
For4thyear:
:⟹4thyeardepreciateprice=2037.6279−20.376279
:⟹4thyeardepreciateprice=£2017.251621
For5thyear:
:⟹5thyeardepreciateprice=2017.251621−20.17251621
:⟹5thyeardepreciateprice=£1997.07910479
For6thyear:
:⟹6thyeardepreciateprice=1997.07910479−19.9707910479
:⟹6thyeardepreciateprice=1977.1083077421
:⟹6thyeardepreciateprice=£1977.1