Math, asked by nirajanamongal8186, 11 months ago

प्रथम सिद्धांत से निम्नलिखित फलनों के अवकलज ज्ञात कीजिए :[tex\\cos ( x - \dfrac{\pi}{8})[/tex]

Answers

Answered by amitnrw
0

f'(x)   =  - Sin(x -π/8)   यदि f(x) =  Cos(x - π/8)

Step-by-step explanation:

प्रथम सिद्धांत

f'(x) =  Lim  h → 0  (f(x + h) - f(x) )/h

f(x) =  Cos(x - π/8)

f'(x) =  Lim  h → 0    (Cos(x + h - π/8)  -  Cos(x - π/8) )/h

=> f'(x) = Lim  h → 0  (Cos(x -π/8  + h)  - Cos(x - π/8 ) )/h

CosA + B) =CosACosB  -SinASinB

A = x -π/8  B = h

=> f'(x) = Lim  h → 0  Cos(x -π/8)Cosh - Sin(x -π/8)Sinh - Cos(x - π/8 )/h

=> f'(x) = Lim  h → 0 Cos(x -π/8)Cosh - Cos(x - π/8 )/h - Sin(x -π/8)Sinh/h

Lim  h → 0 Sinh/h = 1

=> f'(x) = Lim  h → 0  Cos(x -π/8)(Cosh  - 1)  - Sin(x -π/8)

=> f'(x)   =  Cos(x -π/8)(Cos0  - 1)  - Sin(x -π/8)

=> f'(x)   =  Cos(x -π/8)(1  - 1)  - Sin(x -π/8)

=> f'(x)   =  Cos(x -π/8)(0)  - Sin(x -π/8)

=> f'(x)   =  0  - Sin(x -π/8)

=> f'(x)   =  - Sin(x -π/8)

f'(x)   =  - Sin(x -π/8)   यदि f(x) =  Cos(x - π/8)

और पढ़ें

फलनों के अवकलन ज्ञात कीजिए

brainly.in/question/15778266

सीमाओं के मान प्राप्त कीजिए :  [tex]\lim_{x\rightarrow3}\dfrac{x^4 - 81

brainly.in/question/15778085

सीमाओं के मान प्राप्त कीजिए

brainly.in/question/15778083

Answered by Anonymous
0

\huge\star\mathfrak\blue{{Answer:-}}

प्रथम सिद्धांत

f'(x) = Lim h → 0 (f(x + h) - f(x) )/h

f(x) = Cos(x - π/8)

f'(x) = Lim h → 0 (Cos(x + h - π/8) - Cos(x - π/8) )/h

=> f'(x) = Lim h → 0 (Cos(x -π/8 + h) - Cos(x - π/8 ) )/h

CosA + B) =CosACosB -SinASinB

A = x -π/8 B = h

=> f'(x) = Lim h → 0 Cos(x -π/8)Cosh - Sin(x -π/8)Sinh - Cos(x - π/8 )/h

=> f'(x) = Lim h → 0 Cos(x -π/8)Cosh - Cos(x - π/8 )/h - Sin(x -π/8)Sinh/h

Lim h → 0 Sinh/h = 1

=> f'(x) = Lim h → 0 Cos(x -π/8)(Cosh - 1) - Sin(x -π/8)

=> f'(x) = Cos(x -π/8)(Cos0 - 1) - Sin(x -π/8)

=> f'(x) = Cos(x -π/8)(1 - 1) - Sin(x -π/8)

=> f'(x) = Cos(x -π/8)(0) - Sin(x -π/8)

=> f'(x) = 0 - Sin(x -π/8)

=> f'(x) = - Sin(x -π/8)

f'(x) = - Sin(x -π/8) यदि f(x) = Cos(x - π/8)

Similar questions