प्रथम सिद्धांत से निम्नलिखित फलनों के अवकलज ज्ञात कीजिए :[tex\\cos ( x - \dfrac{\pi}{8})[/tex]
Answers
f'(x) = - Sin(x -π/8) यदि f(x) = Cos(x - π/8)
Step-by-step explanation:
प्रथम सिद्धांत
f'(x) = Lim h → 0 (f(x + h) - f(x) )/h
f(x) = Cos(x - π/8)
f'(x) = Lim h → 0 (Cos(x + h - π/8) - Cos(x - π/8) )/h
=> f'(x) = Lim h → 0 (Cos(x -π/8 + h) - Cos(x - π/8 ) )/h
CosA + B) =CosACosB -SinASinB
A = x -π/8 B = h
=> f'(x) = Lim h → 0 Cos(x -π/8)Cosh - Sin(x -π/8)Sinh - Cos(x - π/8 )/h
=> f'(x) = Lim h → 0 Cos(x -π/8)Cosh - Cos(x - π/8 )/h - Sin(x -π/8)Sinh/h
Lim h → 0 Sinh/h = 1
=> f'(x) = Lim h → 0 Cos(x -π/8)(Cosh - 1) - Sin(x -π/8)
=> f'(x) = Cos(x -π/8)(Cos0 - 1) - Sin(x -π/8)
=> f'(x) = Cos(x -π/8)(1 - 1) - Sin(x -π/8)
=> f'(x) = Cos(x -π/8)(0) - Sin(x -π/8)
=> f'(x) = 0 - Sin(x -π/8)
=> f'(x) = - Sin(x -π/8)
f'(x) = - Sin(x -π/8) यदि f(x) = Cos(x - π/8)
और पढ़ें
फलनों के अवकलन ज्ञात कीजिए
brainly.in/question/15778266
सीमाओं के मान प्राप्त कीजिए : [tex]\lim_{x\rightarrow3}\dfrac{x^4 - 81
brainly.in/question/15778085
सीमाओं के मान प्राप्त कीजिए
brainly.in/question/15778083
प्रथम सिद्धांत
f'(x) = Lim h → 0 (f(x + h) - f(x) )/h
f(x) = Cos(x - π/8)
f'(x) = Lim h → 0 (Cos(x + h - π/8) - Cos(x - π/8) )/h
=> f'(x) = Lim h → 0 (Cos(x -π/8 + h) - Cos(x - π/8 ) )/h
CosA + B) =CosACosB -SinASinB
A = x -π/8 B = h
=> f'(x) = Lim h → 0 Cos(x -π/8)Cosh - Sin(x -π/8)Sinh - Cos(x - π/8 )/h
=> f'(x) = Lim h → 0 Cos(x -π/8)Cosh - Cos(x - π/8 )/h - Sin(x -π/8)Sinh/h
Lim h → 0 Sinh/h = 1
=> f'(x) = Lim h → 0 Cos(x -π/8)(Cosh - 1) - Sin(x -π/8)
=> f'(x) = Cos(x -π/8)(Cos0 - 1) - Sin(x -π/8)
=> f'(x) = Cos(x -π/8)(1 - 1) - Sin(x -π/8)
=> f'(x) = Cos(x -π/8)(0) - Sin(x -π/8)
=> f'(x) = 0 - Sin(x -π/8)
=> f'(x) = - Sin(x -π/8)
f'(x) = - Sin(x -π/8) यदि f(x) = Cos(x - π/8)