Math, asked by RehanAhmadXLX, 1 year ago

Page : 1.7

Question No. 55

Attachments:

Bunti360: answer is 11 cube root 4

Answers

Answered by HarishAS
6
Hey friend, Harish here.

Here is your answer:

55)

2 \sqrt[3]{4} + 7 \sqrt[3]{32} - \sqrt[3]{500}    -- (Given expression)

⇒  2  \sqrt[3]{4} + 7 \sqrt[3]{4\times 8} - \sqrt[3]{4 \times 125}

⇒ 2 \sqrt[3]{4} + 7 \sqrt[3]{4\times 2^{3}} - \sqrt[3]{4 \times 5^{3}}

⇒ 2 \sqrt[3]{4} + (7 \times 2 \sqrt[3]{4}) - (5\sqrt[3]{4})

⇒ 2 \sqrt[2]{4} + 14  \sqrt[3]{4} - 5  \sqrt[3]{4}

⇒ (2 + 14 - 5)( \sqrt[3]{4}) = 11 \sqrt[3]{4}

Therefore the answer is (OPTION - C).

56)

( \frac{a}{b})^{x-1} = ( \frac{b}{a})^{x-3}

Now use the law of indices 1/x⁻ᵃ  = xᵃ.

Then,

⇒ ( \frac{a}{b})^{x-1} = ( \frac{a}{b})^{-(x-3)}

Now as the bases are same we can compare the powers,

Then,

(x -1) = - (x -3)

⇒ (x - 1) = 3 - x

⇒ x + x = 3+ 1

⇒ 2x = 4.

⇒ x = 2.

Therefore the value of x is 2.
_________________________________________________

Hope my answer is helpful to you.


HarishAS: Bro, Only 55 or even 56 bro?
RehanAhmadXLX: Depends on uh
HarishAS: Ok,
HarishAS: Will answer even that,
HarishAS: 1 min
HarishAS: Now ok bro?
Answered by Swarup1998
5
The answer is given below :

2 \sqrt[3]{4}  + 7 \sqrt[3]{32}  -  \sqrt[3]{500}  \\  \\  = 2( {4}^{ \frac{1}{3} } ) + 7( {32}^{ \frac{1}{3} } ) - ( {500}^{ \frac{1}{3} } ) \\  \\  =( 2 \times  {( {2}^{2}) }^{ \frac{1}{3} })  +( 7 \times  ( { {2}^{5} })^{ \frac{1}{3} } ) - ( { {5}^{3}  \times  {2}^{2} })^{ \frac{1}{3} }  \\ \\   = (2 \times   {2}^{ \frac{2}{3} } ) + (7 \times  {2}^{ \frac{5}{3} } ) - (( { {5}^{3}) }^{ \frac{1}{3} }  \times ( { {2}^{2} })^{ \frac{1}{3} } ) \\  \\  = (2 \times  {2}^{ \frac{2}{3} } ) + (7 \times  {2}^{(1 +  \frac{2}{3} )} ) - (5 \times  {2}^{ \frac{2}{3} } ) \\  \\  = (2 \times  {2}^{ \frac{2}{3} } ) + (7 \times  {2}^{1}  \times  {2}^{ \frac{2}{3} } ) - (5 \times  {2}^{ \frac{2}{3} } ) \\  \\  = (2 \times  {2}^{ \frac{2}{3} } ) + (14 \times  {2}^{ \frac{2}{3} } ) - (5 \times  {2}^{ \frac{2}{3} } ) \\  \\  = (2 + 14  - 5) \times  {2}^{ \frac{2}{3} }  \\  \\  = 11 \times  {2}^{ \frac{2}{3} }  \\  \\  = 11  \times(  { {2}^{2} })^{ \frac{1}{3} }  \\  \\  = 11 \times  {4}^{ \frac{1}{3} }  \\  \\  = 11 \times  \sqrt[3]{4}  \\  \\  = 11 \sqrt[3]{4}

So, Option (C) is right.

Thank you for your question.
Similar questions