परोपकारिणी परोपकार आद
Answers
Solution :-
Let the two numbers be x and y.
According to the first condition :-
: \implies \sf \dfrac{x}{y} = \dfrac{4}{3}:⟹
y
x
=
3
4
: \implies \sf x = \dfrac{4}{3}y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ................(1):⟹x=
3
4
y ................(1)
According to the second condition :-
: \implies \sf \dfrac{x+2}{y-6} = \dfrac{7}{4}:⟹
y−6
x+2
=
4
7
: \implies \sf 4(x+2)=7(y-6):⟹4(x+2)=7(y−6)
: \implies \sf 4x+8 = 7y-42:⟹4x+8=7y−42
: \implies \sf 4x-7y = -50 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ................(2):⟹4x−7y=−50 ................(2)
Substitute the value of x in eq(2) :-
: \implies \sf 4 \times \dfrac{4}{3}y-7y = -50:⟹4×
3
4
y−7y=−50
: \implies \sf \dfrac{16y}{3}-7y = -50:⟹
3
16y
−7y=−50
: \implies \sf \dfrac{16y-21y}{3}=-50:⟹
3
16y−21y
=−50
: \implies \sf 16y-21y = -50 \times 3:⟹16y−21y=−50×3
: \implies \sf -5y = -150:⟹−5y=−150
: \implies \bf y = 30:⟹y=30
Substitute y = 30 in eq(1) :-
: \implies \sf x = \dfrac{4}{3} \times 30:⟹x=
3
4
×30
: \implies \sf x = 4 \times 10:⟹x=4×10
: \implies \bf x = 40:⟹x=40
The two numbers are 40 and 30.