Science, asked by bindu444444, 5 months ago

Particle cover half the distance with velocity 60km/hr.Remaining part of distance was covered with velocity 15km/hr, for half of the time and with velocity 45km/hr,for other half of time . Find the average speed ?
A) 25km/hr
B) 40km/hr
C) 30km/hr
D) 20km/hr​

Answers

Answered by DILhunterBOYayus
14

\sf{\bold{\blue{\underline{\underline{Given}}}}}

Particle cover half the distance with velocity 60km/hr.

Remaining part of distance was covered with velocity 15km/hr, for half of the time

and with velocity 45km/hr,for other half of time .⠀⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

Find the average speed????⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

1st half velocity=V_0=60km/hr.

remaining,

 V_1=15 km/hr.

V_2=45km/hr.

Let total distance travelled =s

so..,

travelled half time taken= t_1

second half= t_2

Distance travelled in 1st half \rightsquigarrow\tt{\frac{S}{2}}

\rightsquigarrow \tt{t_1=\frac{\frac{S}{2}}{V_0}=\frac{s}{2V_0}} 

Time taken to cover second half =\tt{t_2} 

\therefore\tt{\frac{s}{2}=\frac{t_2 v_1}{2} + \frac{t_2 V_2}{2}} 

\rightsquigarrow s=t_2(V_1+V_2) 

\rightsquigarrow t_2=( \frac{s}{V_1+V_2} ) 

Total time taken, t_1+t_2 

\rightsquigarrow \frac{s}{2V_0}+\frac{s}{(V_1+V_2)} 

\boxed{\underline{\underline{\mathcal\color{pink}{Avarage ~speed=\frac{Total ~distance}{Total ~time}}}}}

\rightsquigarrow \tt{\frac{S}{\frac{s}{2V_0}+\frac{s}{(V_1+V_2)}}} 

Average speed

\rightsquigarrow\tt{\frac{2V_0(V_1+V_2)}{2V_0+V_1+V_2}} 

so..

putting the value..

we get,

\rightsquigarrow \frac{2×60(15+45)}{2×60+15+45} 

\rightsquigarrow \frac{120×60}{120+60} 

\rightsquigarrow \frac{720}{180}

\rightsquigarrow \rightsquigarrow{40}

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

Avarage speed \rightsquigarrow{\orange{40km/hr.}}

⠀⠀⠀⠀

Similar questions