pattern of movements are different in pseudomonas and spirochete, why?
Answers
Answer:
Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. They also have a special attribute: spirochetes can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell with those attached at the other end. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in spirochete motility, and they function by rotating within the periplasmic space. The mechanics of motility also vary among the spirochetes. In Leptospira, a motility model developed several years ago has been extensively tested, and the evidence supporting this model is convincing. Borrelia burgdorferi swims differently, and a model of its motility has been recently put forward. This model is based on analyzing the motion of swimming cells, high voltage electron microscopy of fixed cells, and mutant analysis. To better understand spirochete motility on a more molecular level, the proteins and genes involved in motility are being analyzed. Spirochete periplasmic flagellar filaments are among the most complex of bacterial flagella. They are composed of the FlaA sheath proteins, and in many species, multiple FlaB core proteins. Allelic exchange mutagenesis of the genes which encode these proteins is beginning to yield important information with respect to periplasmic flagellar structure and function. Although we are at an early stage with respect to analyzing the function, organization, and regulation of many of the genes involved in spirochete motility, unique aspects have already become evident. Future studies on spirochete motility should be exciting, as only recently have complete genome sequences and tools for allelic exchange mutagenesis become available.