Pay attention !!
x , y , z are all positive real numbers . prove that
( IIT 1984 )
Attachments:
Answers
Answered by
17
rohitkumargupta:
hn
Answered by
13
Hey Ranjan Bhaiya !
Here is your solution :
=> ( x + y + z ) [ ( 1/x ) + ( 1/y ) + ( 1/z ) ] ≥ 9
=> { x ( 1/x ) } + { x ( 1/y ) } + { x ( 1/z ) } + { y ( 1/x ) } + { y ( 1/y ) } + { y ( 1/z ) } + { z ( 1/x ) } + { z ( 1/y ) } + { z ( 1/z ) } ≥ 9
=> 1 + ( x/y ) + ( x/z ) + ( y/x ) + 1 + ( y/z ) + ( z/x ) + ( z/y ) + 1 ≥9
Rearranging the terms ,
=> 3 + ( x/y ) + ( y/x ) + ( x/z ) + ( z/x ) + ( y/z ) + ( z/y ) ≥ 9
Now,
To prove this , we need to prove that ( x/y ) + ( y/x ) ≥ 2 and so on.
=> ( x/y ) + ( y/x ) ≥ 2
=> ( x² + y² )/ xy ≥2
=> ( x² + y² ) / xy ≥ 2
=> ( x² + y² ) ≥ 2xy
=> x² + y² - 2xy ≥ 0
=> ( x - y )² ≥ 0
We know that square of difference of any 2 numbers is always greater than or equal to 0.
So, ( x/y ) + ( y/x ) ≥ 2.
In same way,
( x/z ) + ( z/x ) ≥ 2
And ,
( y/z ) + ( z/y ) ≥ 2.
By substituting their value ,
= 3 + ( ≥2 ) + ( ≥2 ) + ( ≥2 )
=> ≥ 9 = L.H.S
Proved.
==================================
Hope it helps !!
Here is your solution :
=> ( x + y + z ) [ ( 1/x ) + ( 1/y ) + ( 1/z ) ] ≥ 9
=> { x ( 1/x ) } + { x ( 1/y ) } + { x ( 1/z ) } + { y ( 1/x ) } + { y ( 1/y ) } + { y ( 1/z ) } + { z ( 1/x ) } + { z ( 1/y ) } + { z ( 1/z ) } ≥ 9
=> 1 + ( x/y ) + ( x/z ) + ( y/x ) + 1 + ( y/z ) + ( z/x ) + ( z/y ) + 1 ≥9
Rearranging the terms ,
=> 3 + ( x/y ) + ( y/x ) + ( x/z ) + ( z/x ) + ( y/z ) + ( z/y ) ≥ 9
Now,
To prove this , we need to prove that ( x/y ) + ( y/x ) ≥ 2 and so on.
=> ( x/y ) + ( y/x ) ≥ 2
=> ( x² + y² )/ xy ≥2
=> ( x² + y² ) / xy ≥ 2
=> ( x² + y² ) ≥ 2xy
=> x² + y² - 2xy ≥ 0
=> ( x - y )² ≥ 0
We know that square of difference of any 2 numbers is always greater than or equal to 0.
So, ( x/y ) + ( y/x ) ≥ 2.
In same way,
( x/z ) + ( z/x ) ≥ 2
And ,
( y/z ) + ( z/y ) ≥ 2.
By substituting their value ,
= 3 + ( ≥2 ) + ( ≥2 ) + ( ≥2 )
=> ≥ 9 = L.H.S
Proved.
==================================
Hope it helps !!
Similar questions