pehla jo solve karega use brainlliest mark karinga .
Answers
Answer:
PLS MARK MY ANSWER AS THE BRAINLIEST
Step-by-step explanation:
If 3 cot A = 4,
cot A = 4 / 3
tan A = 3 / 4
LHS
= 1 - tan^2 A / 1 + tan^2 A
= 1 - 3 / 4^2 / 1 + 3 / 4^2
= 1 - 9 / 16 / 1 + 9 / 16
= 16 - 9 / 16 + 9
= 7 / 25
If tan A= 3 / 4
then sin A=3 / 5 (from trigonometric functions)
cos A= 4 / 5
So,apply these values in RHS
cos^2 A - sin^2 A
= 4 / 5^2 - 3 / 5^2
= 16 / 25 - 9 / 25
= 16 - 9 / 25
= 7 / 25
Hence RHS= LHS
yes,for the given value both LHS =RHS
SOLUTION :-
=>Let ΔABC be a right triangle.
• 3cotA = 4
=> Hence, cotA = 4/3
=>We know that,
=> CotA= Side adjacent to ∠A / Side opposite of ∠A
=> CotA= AB/BC = 4/3
=>Hence, AB = 4 , BC=3 and AC = ?
=>By applying the Pythagoras theorem in ΔABC.
=> (AC)² = (AB)²+(BC)²
=> AC² = 4² + 3²
=>AC² = 16 + 9
=> AC² = 25
=> √(AC)² = √25 ---(Take square root on both sides.)
=> .°. AC = 5.
=> cosA = Side adjacent to ∠A / Hypotenuse
=> cosA = AB/AC
=> .°. cosA = 4/5
=>sinA = Side opposite of ∠A / Hypotenuse
=>sinA = BC / AC
=>.°. sinA = 3/5
=>tanA = Side opposite to ∠A / Side adjacent to ∠A
=>tanA = BC / AB
=> .°. tanA = 3/4
=> By substituting the above values of trigonometric functions in the LHS of the equation.
=>1-tan²A/1+tan²A = 1-(¾)²/1+(¾)²
=>1-tan²A/1+tan²A = 1 - 9/16 /1 + 9/16
=> =>1-tan²A/1+tan²A = 7/16 / 25/16
=>.°. 1-tan²A/1+tan²A = 7/25.
=> By substituting the above values of trigonometric functions in the RHS of the equation.
=>cos²A - sin²A = (4/5)² - (3/5)²
=>cos²A - sin²A = 16/25 - 9/25
=>.°. cos²A - sin²A = 7/25