Math, asked by deepalifulara2122, 2 months ago

Perimeter of a square and a rectangle are equal. If the perimeter of the square is 40 cm and the length of the rectangle is 2 cm more than the side of the square. Find the area of the rectangle.​

Answers

Answered by chithra69raja
1

Answer:

Step-by-step explanation:

Given :  Perimeter of a square = Perimeter of a rectangle

            Perimeter of a square = 4 X sides = 4a cm.  

            where a= side of the square

            Perimeter of a rectangle = 2(l+b) cm

            where l = length and b = breadth of the rectangle

            Therefore 4a = 2( l+ b) = 40 cm.

            Length of the rectangle is 2 cm more than the side of the square.

            Hence l = a + 2. Substituting in the formula for perimeter,

            2[ (a+2) + b ] = 40

            2a + 4 + 2b   =40

            2a+ 2b = 40- 4

            2 (a + b) = 36

            Therefore (a+b) = 36 /2 = 18 cm.

            Since 4a = 40 cm  ,  a = 40/4 =10 cm.

            Therefore length of the rectangle = a+2 = 10+2 = 12 cm.

             To find the breadth, use the perimeter formula for a rectangle.

             2( l+ b) = 40 cm

             2( 12 +b)= 40 cm

             24 + 2b = 40

             Hence 2b = 40-24 = 16cm

                           b = 16/2 = 8 cm

             

             Area of a rectange = length X breadth sq.cm

                                             = 12 X 8

                                             = 96 sq.cm.    

                                                           

Similar questions