Math, asked by Shaileshkol2004, 1 year ago

Perimeter of equilateral triangle 42cm find area of triangle

Answers

Answered by akki08
2

perimerter of equilateral triangle= 42cm

.°. its sides= 42 /3 cm

= 14 cm

area of traingle= (root 3 /4) (side)^2

= (root 3/4 )×(14 cm)^2

= 6.062 cm^2


pala3377: hi
Satyam6393: hii akki
Satyam6393: hlo
Satyam6393: hii
Satyam6393: hy
Satyam6393: hey
Answered by shaktisrivastava1234
58

 \huge  \bold {\underline{\fbox{Correct \: Question:- }}}

\sf  {{If \: perimeter  \: of \: equilateral \: triangle \: is \: 42cm, \: find \: area \: of \: triangle.}}

 \huge \bold {\underline {\fbox{Answer:-}}}

 \bold {Given:} \\  \sf \implies{Perimeter \: of \: equilateral \: triangle \: is \: 42cm.} \\ \bold{To \: find:} \\  \sf \implies{Area \: of \: equilateral \: triangle.} \\ \bold{Concept \: used:} \\  \sf \implies{Sides \: of \: a \: equilateral \: triangle \: are \: always \: equal.}  \\ \bold{Formula \: used:} \\  \sf \implies{Perimeter \: of \: equilateral \: triangle=sum \: of \: all \: sides} \\\sf \implies{Area \: of \: equilateral \: triangle=\frac{ \sqrt{3}}{4} {a}^{2}} \\ \sf{where,}\\  \sf{•a \: is \: the \: side \: of \: a \: triangle.} \\   \large\bold{According \: to \: Question:} \\  \tt{First \: we \: find \:sides \: of \: triangle.} \\  \sf{∵Perimeter \: of \: triangle=a+b+c} \\  \sf{∴42cm=3a \:  \:  \: (∵sides \: of \: equilateral \: triangle \: is \: equal.)} \\  \sf{∴ \frac{42}{3} = 14} \\  \sf \implies{Hence,sides \: of \: equilateral \: triangle \: is \: 14cm.} \\  \sf{Then,} \\  \sf{Area \: of \: triangle= \frac{ \sqrt{3} }{4} {a}^{2} =  \frac{ \sqrt{3} }{4} {14}^{2} = \frac{ \sqrt{3} }{4} \times 196 =  \sqrt{3} \times 49 =84.87}

_____________________________________________________

Similar questions