Math, asked by anshikapjs7772, 10 months ago

Period of function |sinx| + | cosx|

Answers

Answered by mythri777
0

Answer:

sin x+ cos x is equal to 1

Answered by nilesh102
3

  \fcolorbox{red}{aqua} {Solution:-}

 \red{ =  > } | \sin(x) |  +  | \cos(x) |  \\

The  \: periods  \: of  \: sin(x) and \:  cos(x)  \\ are  \: both \:  360^{0} \:   so \:  sin(x) + cos(x)  \\  repeats  \: on \:  any \:  interval  \: of  \: length  \\  {360}^{0} .  \: Thus 360^{0} \:   is  \: a \:  period  \: of \:   \\ sin(x) + cos(x).  \: The  \: question \:  is  \:  \\ then, \:  is \:  360^{0}   \: the  \: period  \: of  \:  \\ sin + cos(x)?  \: That  \: is,  \: is  \: 360^{0}   \: the \:   \\ length \:  of \:  the  \: shortest \:  interval \:  \\  on \:  which  \: sin + cos(x)  \: repeats? \:   \\ This  \: is  \: where \:  a  \: graph \:  is \:  useful. \: </p><p></p><p> \\  \\ I  \: plotted \:  sin(x) + cos(x)  \: for  \: x  \:  \\ from \:  -360^{0}  \:  to \:  720^{0} .

 From  \: the  \: graph  \: you \:  can \:  see \:   \\ that  \: there is \:  a  \: repeat  \: on  \:  \\ intervals \:  of  \: length \:  360^{0}   \:  but \:   \\ no \:  shorter  \: interval  \: where \:   \\ the \:  graph \:  repeats.  \: Thus \:   \\ the \:  period \:  of  \:  \\ sin(x) + cos(x)  \: is \:  360^{0} . \\  \\  \underline{ \fbox{i \: hope \: it \: helps \: you.}}

Attachments:
Similar questions