Physics, asked by chaejenkim7, 3 months ago

physics gravitation numerical

Attachments:

Answers

Answered by InfiniteSoul
11

Given that :-

⠀⠀⠀⠀

  • Mass of the Earth = m₁ = 6 × 10²⁴ kg
  • Mass of the Sun = m₂ = 2 × 10³⁰ kg
  • Average distance = r = 1.5 × 10¹¹ m

⠀⠀⠀⠀

To find :-

⠀⠀⠀⠀

  • Force of gravitation = F = ??

⠀⠀⠀⠀

Answer :-

⠀⠀⠀⠀

  • Force of gravitation between Earth and Sun is 3.557 × 10²² N

⠀⠀⠀⠀

Solution :-

⠀⠀⠀⠀

We know that ;

⠀⠀⠀⠀

\sf{\large{\dag{\underline{\boxed{ F = G \dfrac{m_1 . m_2}{r^2}}}}}}

⠀⠀⠀⠀

Where ;

⠀⠀

G = 6.67 × 10⁻¹¹ Nm² kg m⁻²

⠀⠀

Now ;

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 10^{-11} \times  6 \times  10^{24} \times  2 \times  10^{30} }{ ( 1.5 \times  10^{11} )} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{-11 } \times  10^{24} \times  10^{30} }{ ( 1.5 \times  10^{11} )^2 } }

⠀⠀⠀⠀

  • From law of exponent ; aᵐ × aⁿ = aᵐ⁺ⁿ

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times    10^{24 + 30 +( -11) }  }{ ( 1.5 \times  10^{11} )^2} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{54 - 11} }{ ( 1.5 \times  10^{11} )^2} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{43} }{ ( 1.5 \times  10^{11} )^2} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{43} }{ 1.5 \times 1.5 \times 10^{11} \times 10^{11} } }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{43} }{ 1.5 \times 1.5 \times 10^{11 + 11}} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{43} }{ 1.5 \times 1.5 \times 10^{22} } }

⠀⠀⠀⠀

  • From law of exponent ; aᵐ / aⁿ = aᵐ⁻ⁿ

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{43 - 22 } }{ 1.5 \times 1.5  } }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{21 } }{ 1.5 \times 1.5  } }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 6 \times  2 \times  10^{21 } }{ 2.25} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 2 \times  2 \times  10^{21 } }{ 0.75} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{6.67 \times 4 \times  10^{21 } }{ 0.75} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{26.68 \times  10^{21 } }{ 0.75} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{2668 \times  10^{21 } }{ 75} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{533.6 \times  10^{21 } }{ 15} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{106.72 \times  10^{21 } }{ 3} }

⠀⠀⠀⠀

\sf : \implies \: { F = \dfrac{35.573\times  10^{21 } }{ 1 } }

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf : \implies \: { F = 3.557 \times  10^{22 } N }

⠀⠀⠀⠀

\sf\: \: \:\: \:  \: \: \: \: \:  \bigstar{\underline{\boxed{ F = 3.557 \times 10^{22} N}}}

Similar questions