CBSE BOARD X, asked by anjali12lalwani, 1 month ago

Physics question please solve please don't give unnecessary answers give answers for all parts please it's urgent​

Attachments:

Answers

Answered by TrustedAnswerer19
35

Answer with explanation :

 \bf \:  \bigstar \: a \\  \\ \sf \: here \:  \: 4\Omega \:  \: and \: 4\Omega \:  \: resistor \: are \: connected  \\  \sf\: in \: parallel \\  \sf \therefore \:  \frac{1}{R_p}  =  \frac{1}{4}  +  \frac{1}{4}  =  \frac{2}{4}  =  \frac{1}{2}  \\ \sf \therefore \: R_p = 2\Omega \\  \\  \sf \: again \:  \: R_p \:  \: and \:  \: 2\Omega \:  \: are \: in \: series \:  \\  \sf \therefore \: eqiuvalent \: resistance = R_{eq} \\ \\ R_{eq}= R_p + 2 = 2 + 2 = 4\Omega \:  \\ \sf \therefore \: R_{eq} = 4\Omega \\  \\  \\  \pink { \boxed{ \sf \: equivalent \: resistance \:  \: R_{eq} = 4\Omega}}

 \bigstar \:  \bf \: b \\  \sf \: ammeter \: reading \:  = I =  \: to \: find \\  \\  \bf \: given \:  \\  \sf \: voltage \:  \: V = 4 \: V \\  \sf \: resistance \: of \: the \: circuit \:  \: R_{eq} = 4\Omega \:  \\  \\  \bf \: we \: know \: that \:  \\  \sf \: V = IR_{eq} \\ \sf \therefore \: I =  \frac{V}{R_{eq}}  \\  \sf \:  \:  \:  \:  \:  \:  \:  =  \frac{4}{4}  = 1 \: A \\  \\  \green { \boxed{ \sf \: ammeter \: reading \: I = 1 \: A}}

 \bigstar \bf \: c \\  \\  \sf \: voltmeter \: reading \:  \: V_m = IR_p \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \sf = 1 \times 2 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2V \\  \\  \sf \orange{ \boxed{ \sf \: voltmeter \: reading \: V_m = 2 \: V}}

 \bf \bigstar \: d

We know that,

The ammeter has to be connected in series to the circuit. As a result, if we add it in parallel, its reading will appear as zero.

In a same way,

The voltmeter has to be connected in parallel the circuit. As a result, if we add it in series , its reading will appear as zero.


MystícPhoeníx: Well Done !! Keep it Up
Answered by OoAryanKingoO78
6

Answer:

Answer :-

 \bf \:  \bigstar \: a \\  \\ \sf \: here \:  \: 4\Omega \:  \: and \: 4\Omega \:  \: resistor \: are \: connected  \\  \sf\: in \: parallel \\  \sf \therefore \:  \frac{1}{R_p}  =  \frac{1}{4}  +  \frac{1}{4}  =  \frac{2}{4}  =  \frac{1}{2}  \\ \sf \therefore \: R_p = 2\Omega \\  \\  \sf \: again \:  \: R_p \:  \: and \:  \: 2\Omega \:  \: are \: in \: series \:  \\  \sf \therefore \: eqiuvalent \: resistance = R_{eq} \\ \\ R_{eq}= R_p + 2 = 2 + 2 = 4\Omega \:  \\ \sf \therefore \: R_{eq} = 4\Omega \\  \\  \\  \pink { \boxed{ \sf \: equivalent \: resistance \:  \: R_{eq} = 4\Omega}}

 \bigstar \:  \bf \: b \\  \sf \: ammeter \: reading \:  = I =  \: to \: find \\  \\  \bf \: given \:  \\  \sf \: voltage \:  \: V = 4 \: V \\  \sf \: resistance \: of \: the \: circuit \:  \: R_{eq} = 4\Omega \:  \\  \\  \bf \: we \: know \: that \:  \\  \sf \: V = IR_{eq} \\ \sf \therefore \: I =  \frac{V}{R_{eq}}  \\  \sf \:  \:  \:  \:  \:  \:  \:  =  \frac{4}{4}  = 1 \: A \\  \\  \green { \boxed{ \sf \: ammeter \: reading \: I = 1 \: A}}

 \bigstar \bf \: c \\  \\  \sf \: voltmeter \: reading \:  \: V_m = IR_p \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \sf = 1 \times 2 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2V \\  \\  \sf \orange{ \boxed{ \sf \: voltmeter \: reading \: V_m = 2 \: V}}

 \bf \bigstar \: d

We know that,

The ammeter has to be connected in series to the circuit. As a result, if we add it in parallel, its reading will appear as zero.

In a same way,

The voltmeter has to be connected in parallel the circuit. As a result, if we add it in series , its reading will appear as zero.

Similar questions