Physics, asked by Anonymous, 3 months ago

✪ Physics ✪
The energy required to take a satellite to a height 'h' above earth surface (radius of earth = 6.4 × 10³ km) is E1 and kinetic energy required for the satellite to be in a circular orbit at this height is E2. The value of h for which E1 and E2 are equal is :-
a) 1.28 × 10⁴ km
b) 6.4 × 10³ km
c) 3.2 × 10³ km
d) 1.6 × 10³ km​

Answers

Answered by EnchantedGirl
20

★Given :

  • The energy required to take a satellite to a height 'h' above earth surface is E₁.
  • Kinetic energy required for the satellite to be in a circular orbit at this height is E₂ .
  • Radius of earth = 6.4 × 10³ km

★To find :

  • The value of h for which E₁ and E₂ are equal

★Solution :

Applying conservation of total energy,

(K.E + P.E)₁ = (K.E + P.E)₂ __(1)

K.E of satellite is zero at the earth's surface.

And if we define the potential energy to be zero at r = infinity,U = -GmM/r.

Therefore,

\displaystyle \implies \sf E_1+\bigg(\frac{-GMm}{R} \bigg)= 0+\bigg(\frac{-GMm}{(R+h)} \bigg) \\

\displaystyle \implies \sf E_1 = \frac{GMm}{R} - \frac{GMm}{(R+h)}  \\

\displaystyle \implies \sf E_1 = \frac{GMm(R+h)-GMm(R)}{R(R+h)} \\

\displaystyle \implies \sf E_1 = \frac{GMm(\cancel{R}+h-\cancel{R})}{R(R+h)} \\

\displaystyle \implies \sf E_1 = \frac{GMmh}{R(R+h)} \\

We know :

\mapsto \boxed{\sf V =\sqrt{\frac{GM}{r}}}\\

\therefore \sf V = \dfrac{GM}{R+h} \\

Now,

Using the formula :

\leadsto \boxed{\sf K.E = \frac{1}{2} mv^2 }\\

\implies \sf E_2 = \dfrac{1}{2} mv^2 \\

\implies \sf E_2 = \dfrac{1}{2} \times m\times \bigg(\sqrt{\dfrac{GM}{(R+h)}} \bigg) ^2 \\

\implies \sf E_2 = \dfrac{1}{2} \times m \times \dfrac{GM}{R+h} \\

We have to find the value of h for which E₁ & E₂ are equal.Therefore,

\implies \sf E_1 = E_2 \\

\displaystyle \implies \sf \frac{\cancel{GMm}h}{R\cancel{(R+h)}} = \frac{1}{2} \cancel{m}\bigg(\frac{\cancel{GM}}{\cancel{R+h}} \bigg)\\

\implies \sf \dfrac{h}{R} = \dfrac{1}{2}  \\

\implies \sf 2h = R\\\\ \implies \sf h = \dfrac{R}{2} \\

Given that R = 6.4 × 10³ km.

Substituting this value in the above equation,

\implies \sf h = \dfrac{6.4 \times 10^3 }{2} \\

\implies \underline{\boxed{\bold{h = 3.2\times  10^3km}}}\\

Therefore,

Option(C) is correct.

_____________

Similar questions