Physics, asked by vanshikavikal448, 7 hours ago

Planck's constant(h) , speed of light in vacuum(c) and Newton's gravitational constant(G) are three fundamental constants. which of the following combinations of these has the dimension of length ?
 \bold{a) \:  \:   \frac{ \sqrt{hG} }{ {c}^{ \frac{ 5 }{2} } } } \\
\bold{ b) \:  \:  \frac{ \sqrt{hG } }{ {c}^{ \frac{3}{2} } } } \\
 \bold{ c) \:  \:  \sqrt{ \frac{hc}{G} } } \\
 \bold{d) \:  \:  \sqrt{ \frac{Gc}{ {h}^{ \frac{3}{2} } } } } \\

Answers

Answered by Anonymous
17

\maltese\: \underline{\underline{\sf AnsWer :}}\:\maltese

DIMENSIONAL ANALYSIS :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Let us assume that the Length (L) depends on the planks constant (h) , Speed of light in vaccum (c) and Newton's Gravitational constant (G).

\longrightarrow \: \sf L\propto [h]^x [c]^y [G]^z \\

Adding k as dimensionaless constant we have :

\longrightarrow \: \sf L = k [h]^x [c]^y [G]^z \\

\longrightarrow \: \sf [L] =  [h]^x [c]^y [G]^z \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

DIMENSIONS :

\dag\:\underline{\tt  Dimensions \:  of \:  planks  \: constant \:  (h) = [ML^2T^{-1}]} \\

\dag\:\underline{\tt  Dimensions \:  of \: speed  \: of \:  light \:  in \:  vaccum \:   (c) = [M^0L^{1} T^{-1}]} \\

\dag\:\underline{\tt  Dimensions \:  of \: Gravitational\: constant\:   (G) = [M^{-1}L^{3} T^{-2}]} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow \: \sf [M^0L^1T^0] =  [ML^2T^{-1}]^x [M^0L^{1} T^{-1}]^y [M^{-1}L^{3} T^{-2}]^z \\

\longrightarrow \: \sf [M^0L^1T^0] =  [M]^{(x - z)}  [L] ^{(2x + y + 3z)}  [T]^{ (- x - y - 2z)} \\

On comparing the powers of LHS and RHS we have :

\longrightarrow \: \sf x - z = 0 \\

\longrightarrow \: \sf x = z \:  \:  \: ...(i) \\

Now,

\longrightarrow \: \sf 2x + y  + 3z = 1 \\

From equation (i) replace the value of x = z in above equation :

\longrightarrow \: \sf 2z + y  + 3z = 1 \\

\longrightarrow \: \sf 5z + y = 1 \:  \:  \:  \: ...(ii) \\

Also,

\longrightarrow \: \sf  - x  -  y   -  2z = 0 \\

\longrightarrow \: \sf  - z  -  y   -  2z = 0 \\

\longrightarrow \: \sf  - 3z  -  y = 0 \\

\longrightarrow \: \sf    y =  - 3z \:  \:  \:  \:  \: ...(iii) \\

By Substituting the value of y from equation (iii) to equation (ii) :

\longrightarrow \: \sf 5z + y = 1 \\

\longrightarrow \: \sf 5z  - 3z = 1 \\

\longrightarrow \: \sf 2z = 1 \\

\longrightarrow \: \bf z =  \dfrac{1}{2}  \\

From equation (i) we observe that x = z, therefore:

\longrightarrow \: \sf x = z \:

\longrightarrow \: \bf x =  \dfrac{1}{2} \:

By taking equation (iii) we have :

\longrightarrow \: \sf    y =  - 3z \\

\longrightarrow \: \sf    y =  - 3 \bigg( \frac{1}{2}  \bigg)\\

\longrightarrow \: \bf y =  \frac{ - 3}{2} \\

Now,

\longrightarrow \: \sf [L] =  [h]^{ \frac{1}{2} }  [c]^{ \frac{ - 3}{2} }  [G]^{ \frac{1}{2} }  \\

\longrightarrow \: \sf [L] =   \dfrac{[h]^{ \frac{1}{2} }  [G]^{ \frac{1}{2} }}{[c]^{ \frac{3}{2} }}  \\

\longrightarrow \: \sf L=   \dfrac{  \sqrt{h}   \sqrt{G }}{c^{ \frac{3}{2} }}  \\

\longrightarrow \: \underline{ \boxed{ \bold{ L=   \dfrac{   \sqrt{hG }}{c^{ \frac{3}{2} }}}}}  \\

Hence, option (B) is the correct answer.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Attachments:

Anonymous: Fantastic!!
Anonymous: Thanks (≧▽≦)
Similar questions