Math, asked by adityakumar1975in, 8 months ago

Plase answer this math question

Attachments:

Answers

Answered by amitkumar44481
4

AnsWer :

11 + ( - 6 √3 )

SolutioN :

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

 \tt  \rightarrow  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }

 \tt  \rightarrow  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }   \times   \dfrac{7  - 4 \sqrt{3} }{7  -  4 \sqrt{3} }

 \tt  \rightarrow  \dfrac{(5 + 2 \sqrt{3}) \times( 7  - 4 \sqrt{3})}{{(7)}^{2}   - {( 4 \sqrt{3})}^{2}}

 \tt  \rightarrow  \dfrac{35  - 20 \sqrt{3} + 14 \sqrt{3}  - 24}{{(7)}^{2}   - {( 4 \sqrt{3})}^{2}}

 \tt  \rightarrow  \dfrac{35  - 6 \sqrt{3} - 24}{{(7)}^{2}   - {( 4 \sqrt{3})}^{2}}

 \tt \rightarrow\dfrac{11  - 6 \sqrt{3} }{{(7)}^{2}   - {( 4 \sqrt{3})}^{2}}

 \tt \rightarrow\dfrac{11  - 6 \sqrt{3} }{49   - {48}}

 \tt \rightarrow11 - 6 \sqrt{3}

So,We can also write as,

 \rightarrow11 - 6 \sqrt{3} = a + b \sqrt{3}

 \rightarrow11  + ( - 6 \sqrt{3} )= a + b \sqrt{3}

 \rule{100}2

 \rightarrow a =  11.

 \rightarrow b  \sqrt{3}  =  - 6 \sqrt{3}

Therefore, the value of a = 11 and b = - 6.

Answered by DARLO20
57

\sf{\underline{\large{\underline{\orange{QUESTION}:-}}}}

Simplify and find the value of a and b .

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  a + b \sqrt{3}

\sf{\underline{\large{\underline{\green{ANSWER}:-}}}}

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\  for \: rationalise \: we \: use \: the \: formula \\  \:  \:  \:  \: (a + b)(a - b) = ( {a}^{2}  -  {b}^{2} )

☞Now, first simplify the L.H.S .

✔️L.H.S:-

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }   \\  =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  =  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})  }{{7}^{2} -  {(4 \sqrt{3}) }^{2}  }  \\  =  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3} - 24  }{49 - 48}  \\  =  \frac{11 - 6 \sqrt{3} }{1}  \\  = 11 - 6 \sqrt{3}

☞Now, we see the similarity between L.H.S and R.H.S .

✔️=> 11 - 6√3 = a + b√3

✔️=> 11 + (-6)√3 = a + b√3

☞Now, compare L.H.S and R.H.S we get,

  • a = 11 and b = -6

\bigstar\:\underline{\boxed{\bf{\red{Required\: Answer:\:a\:=\:11\:and\:b\:=\:-6}}}}

Similar questions