Math, asked by sanjanac029, 10 months ago

please ans limit class 12th​

Attachments:

Answers

Answered by Rajshuklakld
4

Question:- To find the (x-> \infty lim \: n \times( \frac{f(x + t) + 2f(x + 2t) + .... + nf(x + nt)}{f(x + t) + 4f(x + 4t) + .... {n}^{2}f(x +  {n}^{2}t)})

given that,

f(x + t) = f(x)

now, if we analyse

f(x + 2t) = f(x + t + t)

putting f(x+t)=f(x)

we get

f(x + t + t) = f(x  + t) = f(x)

so,

f(x + 2t) = f(x)

similarly

f(x + 2t) = f(x + 3t) = f(x + 4t) = f(x + 5t) = f(x)

putting this value in given terms we get

 =  > n \times \frac{f(x) + 2(fx) + 3(fx) + ...... + nf(x)}{f(x) + 4f(x) + ..... +  {n}^{2}fx }

now, taking out f(x) common from both numerator and denominator we get

 =  >n \times \frac{f(x)(1 + 2 + 3 + .... +n) }{f(x)(1 + 4 + 9 + .... +  {n}^{2}) }

cancelling out f(x) from numerator and denominator

we get

=>

n \times \frac{1 + 2 + 3 + .... + n}{ {1}^{2} +  {2}^{2} +  {3}^{2} + ... {n}^{2}  }

as we know,

sum of first n-natural number=

 \frac{n(n + 1)}{2}

sum of square of first n-natural number=

 \frac{ n(n + 1)(2n + 1)}{6}

putting these value we get

limit

(x =  >  \infty ) =  \frac{ {n}^{2}(n + 1) \times 6 }{n(n + 1)(2n + 1) \times 2}

cancelling out (n+1) from numerator. and denominator we get

 =  >  \frac{ {n} \times 6}{(2n + 1) \times 2}

now divide the numerator and denominator by n

=> \frac{3}{2 +  \frac{1}{n} }

now putting n=infinite we get

required limit= \frac{3}{2 +  \frac{1}{ \infty } }   =  \frac{3}{2 + 0} =  \frac{3}{2}

Hence 3/2 will be the required limit

Similar questions