Math, asked by abdullahsaeed456789, 3 days ago

Please ans the 1uestion for 20 points

Attachments:

Answers

Answered by mathdude500
4

Question :-

Seven times the sum of an integer and 12 is at least 50 and at most 60. Write and solve the inequality and express this relationship.

\large\underline{\sf{Solution-}}

Given that,

Seven times the sum of an integer and 12 is at least 50 and at most 60.

Let assume that integer be x.

So,

\rm \: 7(x + 12) \geqslant 50 -  -  - (1) \\

and

\rm \: 7(x + 12) \leqslant 60 -  -  - (2) \\

From equation (1) and (2), we concluded that

\rm \: 50 \leqslant 7(x + 12) \leqslant 60 \\

can be rewritten as

\rm \: 50 \leqslant 7x + 84 \leqslant 60 \\

On Subtracting 84 from each term, we get

\rm \: 50 - 84 \leqslant 7x + 84 - 84 \leqslant 60 - 84 \\

\rm \:  - 34 \leqslant 7x \leqslant  - 24 \\

On dividing by 7, each term we get

\rm \:  - \dfrac{34}{7}  \leqslant x \leqslant  - \dfrac{24}{7}  \\

\rm\implies \:x \:  \in \:   \bigg[- \dfrac{34}{7}, \: - \dfrac{24}{7} \bigg] \\

As it is given that, x is an integer.

\rm\implies \:x \:  =  \:  \{ - 4\} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ |x|  < y\rm\implies \: - y < x < y}\\ \\ \bigstar \: \bf{ |x|  \leqslant y\rm\implies \: - y \leqslant x \leqslant y}\\ \\ \bigstar \: \bf{ |x|  > y\rm\implies \: x <  - y \: or \: x > y} \: \\ \\ \bigstar \: \bf{ |x| \geqslant y\rm\implies \:x \leqslant  - y \: or \: x \geqslant y}\\ \\ \bigstar \: \bf{ |x - a|  < y\rm\implies \:a - y < x < a + y}\\ \\ \bigstar \: \bf{ |x - a|  \leqslant y\rm\implies \:a - y \leqslant x \leqslant a + y}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions