Math, asked by smrutisudhadas6, 4 days ago

Please ans this question

Attachments:

Answers

Answered by dollyayesha2345
1

Simplifying 14(a)

Given:\frac{13}{11}\times(-\frac{14}{11})+\frac{3}{11}(\frac{-7}{5})+(\frac{-13}{11})\times\frac{34}{5}

To Simplify the given equation

Solution,

Multiplying the fractions

\frac{(13\times-14)}{(11 \times 11)}+\frac{3}{11}\times\frac{-7}{5}+\frac{-13}{11}\times \frac{34}{5}

Simplifying the arithmetic

\frac{-182}{(11\times11)}+\frac{3}{11}\times\frac{-7}{5}+\frac{-13}{11}\times\frac{34}{5}

\frac{-182}{121}+\frac{3}{11}\times\frac{-7}{5}+\frac{-13}{11}\times\frac{34}{5}

Multiplying the fractions

\frac{-182}{121}+\frac{(3\times-7)}{(11\times5)}+\frac{-13}{11}\times\frac{34}{5}

\frac{-182}{121}+\frac{-21}{55}+\frac{-13}{11}\times\frac{34}{5}

Grouping the like terms

(\frac{-182}{121}+\frac{-21}{55})+\frac{-13}{11}\times\frac{34}{5}

Finding the L.C.M

\frac{(-182\times5)}{(121\times5)}+\frac{(-21\times11)}{(55\times11)}+\frac{-13}{11} \times\frac{34}{5}

Multiplying the denominator and numerator

\frac{(-182\times5)}{605}+\frac{(-21\times11)}{605}+\frac{-13}{11}\times\frac{34}{5}

\frac{-910}{605}+\frac{-231}{605}+\frac{-13}{11}\times\frac{34}{5}

Adding the fractions

\frac{(-910+-231)}{605}+\frac{-13}{11}\times\frac{34}{5}

\frac{-1141}{605}+\frac{-13}{11}\times\frac{34}{5}

Multiplying the fractions

\frac{-1141}{605}+\frac{(-13\times34)}{(11\times5)}

\frac{-1141}{605}+\frac{-442}{55}

Finding L.C.M

\frac{-1141}{605}+\frac{(-442\times11)}{(55\times11)}

\frac{-1141}{605}+\frac{-4862}{605}

Combining the fractions

\frac{(-1141+-4862)}{605}

\frac{-6003}{605}

Final Answer:\frac{-6003}{605}

Simplifying 14(b)

Given:\frac{6}{5}\times\frac{3}{7}-\frac{1}{5}\times\frac{3}{7}

To Simplify the given equation

Solution,

Multiplying the fractions

(\frac{6\times3}{5\times7})+-(\frac{1}{5}\times\frac{3}{7})

Simplifying the arithmetic

\frac{18}{35}+-(\frac{1}{5}\times\frac{3}{7})

Multiplying the fractions

\frac{18}{35}+-(\frac{1\times3}{5\times7})

\frac{18}{35}+-\frac{3}{35}

Simplifying the arithmetic

\frac{18}{35} +\frac{-3}{35}

Adding the fractions

\frac{(18+-3)}{35}

\frac{15}{35}

Using H.C.F in both the numerator and denominator

\frac{(3\times5)}{(7\times5)}

\frac{3}{7}

Final Answer: \frac{3}{7}

Similar questions