Please ansr this wid explaination!!
I will mark u brainliest if u explain properly!!
Attachments:
Answers
Answered by
0
Answer:
In Δ POR
angle PRO=90° and OT bisects PQ (theorem of class (theorem of class 9th)
Therefore,PR=QR=x
PR+QR=8(given)
x+x=8
2x=8
x=8/2
x=4cm
PR=4cm
now, by pythagoras theorem
PR^2+OR^2=PO^2
4^2+OR^2=5^2
OR^2=25-16
OR^2=9
OR=3cm
Let TP be y and TR be x
Now in right Δ TPR
PR^2+TR^2=TP^2
4^2+x^2=y^2
16+x^2=y^2 - (1)
NOW ΔTPO
∠TPO=90° (BY THEOREM)
THEREFORE BY PYTHAGORAS THEOREM
OT^2=PT^2+PO^2
(OR+RT)^2= y^2+5^2
(3+x)^2=16+x^2+25 (FROM EQ. 1)
9++6x=16+x^2+25
9+6x-16-25=x^2-x^2
6x-32=0
6x=32
x=32/6
x=16/3 -(2)
Putting value of x from eq 2 in 1
16+x^2=y^2
16+(16/3)^2=y^2
16+256/9=y^2
144+256/9=y^2
400/9=y^2
√400/9=y
20/3=y=TP
∴The length of TP is 20/3cm
Similar questions