Math, asked by pronavneetsingh, 9 months ago

please answer.............. ​

Attachments:

Answers

Answered by prince5132
23

GIVEN :-

 \\  \\ \bigstar  \:  \displaystyle \sf \int_{-a} ^{a}  \sqrt{ \frac{a - x}{a + x} } \\ \\

TO FIND :-

 \\ \\ \bigstar \:   \displaystyle \sf \: value \: of \:  \int_{-a} ^{a}  \sqrt{ \frac{a - x}{a + x} } \\  \\

SOLUTION :-

 \\  \\  : \implies\displaystyle \sf   \int_{-a} ^{a}  \sqrt{ \frac{a - x}{a + x} } \\   \\  \\

 : \implies\displaystyle \sf Let  \: I = \int_{-a} ^{a}  \sqrt{ \frac{a - x}{a + x} } \\   \\  \\

 \bullet \: \displaystyle \sf Let  \:  x = a \cos2 \theta \\  \\  \\

 : \implies\displaystyle \sf \frac{dx}{d \theta}  =  - 2a \sin2 \theta \\  \\  \\

 : \implies\displaystyle \sf \: dx =  - 2a \sin2 \theta.d \theta \\  \\  \\

 \therefore\displaystyle \sf \: I =  \int \sqrt{ \frac{a - a \cos2 \theta}{a + a \cos2 \theta} }  \: . \:  - 2a \sin2 \theta \: d \theta \\  \\  \\

: \implies\displaystyle \sf  I  =  \int \:  \sqrt{ \frac{ \cancel{a}(1 - cos2 \theta)}{ \cancel{a}(1 + cos2 \theta)} }  \:  \: . - 2a \sin2 \theta \: d \theta \\  \\  \\

: \implies\displaystyle \sf  I  =   - 2a  \int  \sqrt{ \dfrac{ \sin ^{2}  \theta}{ \cos ^{2} \theta } }  \:  \:  . \sin2 \theta \: d \theta \\  \\  \\

: \implies\displaystyle \sf  I   =  - 2a \int  \sqrt{ \frac{ \sin \theta}{  \cancel{\cos \theta}} }  \:  \: . 2 \sin\theta. \cancel{ \cos \theta}.d \theta \\  \\  \\

: \implies\displaystyle \sf  I   =  - 4a \int  \sin ^{2}\theta \: d \theta \\  \\  \\

: \implies\displaystyle \sf  I   =  - 4a \int \frac{1 -  \cos2 \theta}{2}  \: d \theta \\  \\  \\

: \implies\displaystyle \sf  I   =  2a \int \bigg( \cos2 \theta - 1 \bigg) \: d \theta \\  \\  \\

: \implies\displaystyle \sf  I   =  2a \Bigg[ \int \cos2 \theta \: d \theta -  \int d \theta\Bigg] \\  \\  \\

: \implies\displaystyle \sf  I   = 2a\Bigg[  \dfrac{ \sin2 \theta}{2}  - a \theta\Bigg] + c \\  \\  \\

: \implies\displaystyle \sf  I   =a \sin2 \theta - 2a \theta + c \\  \\  \\

: \implies\displaystyle \sf  I   =a \sqrt{1 -  \frac{x ^{2} }{a ^{2} }  }  - a \cos ^{ - 1}  \frac{x}{a}  + c \\  \\  \\

: \implies\displaystyle \sf  I   = \sqrt{a ^{2}  - x ^{2} }  - a \cos ^{ - 1}  \dfrac{x}{a}  + c \\  \\  \\

: \implies\displaystyle \sf  I    \bigg | ^{a} _{-a} =  \sqrt{a ^{2}  - x ^{2} } \bigg | ^{a} _{-a}  - a \cos ^{ - 1}  \frac{x}{a}  + c \\  \\  \\

: \implies\displaystyle \sf  I =  \big \{0 - 0  \big \} - a \bigg \{ \cos ^{ - 1} 1 -  \cos ^{ - 1} ( - 1)  \bigg \}\\  \\  \\

: \implies\displaystyle \sf   I =  - a \bigg(0 -  \pi \:  \bigg) \\  \\  \\

: \implies \underline{ \boxed{\displaystyle \sf   I = a \pi}} \\  \\

 \therefore \underline{\displaystyle \sf Required \ answer \ of \ this \ question \ is \  a \pi.} \\  \\


Vamprixussa: Excellent !
BrainlyPopularman: Nice
amitkumar44481: Perfect :-)
mddilshad11ab: Awesome
BloomingBud: great
Anonymous: Amazing ( ◜‿◝ )♡
MisterIncredible: Brilliant
Draxillus: Excellent.Keep doing the good work.
Similar questions