please answer 23rd question
Answers
Answer:
given :- Rectangle ABCD a point o inside a rectangle
To prove :- OB^2 + OD^2 = OA^2 + OC^2
proof :-
let us draw PQ through O which is parallel to BC
PQ parallel AD (opposite side of the rectangle)
all the angles of the rectangle is of 90*
So angle A = angle B = angle C = angle D = 90*
PQ parallel BC & AD is transversal
angle APO = angle B
angle APO = 90*
similarly, we can prove that
angle BPO = 90*
angle DQO = 90*
angle CQP = 90*
using PT
(hypo)^2 = (height)^2 + (base)^2
In trangle OPB
OB^2 = BP^2 + OP^2 ...........(1)
In trangle OQD
OD^2 = OQ^2 + DQ^2 ............(2)
In trangle OQC
OC^2 = OQ^2 + CQ^2 ..............(3)
In trangle OAP
OA^2 = AP^2 + OP^2 ................(4)
Adding 1 & 2
OB^2 + OD^2 = BP^2+ OP^2 + OQ^2 + DQ^2
OB^2 + OD^2 =CQ^2 + OP^2+ OQ^2 + AP^2
{As PQ II BC & BP II CQ
BPQC is IIgm
So BP = CQ (opposite sides of IIgm are equal)
similarly
DQ = AP }
OB^2 + OD^2 =OC^2 + OA^2 ....(from 3&4)
thus OB^2 + OD^2 =OC^2 + OA^2