please answer. .......
Attachments:
Answers
Answered by
0
In quadrilateral ABCD, AC is a diagonal.
∴ ar ABC = ar ADC
ar AOB + arBOC = arAOD + ar DOC
In quadrilateral ABCD, BD is diagonal
∴ ar ABD = ar BCD
ar AOD + arAOB = arBOC + ar COD
From equation (i) and (ii),
We have ;
arAOD - ar BOC = arBOC - ar AOD
So,
2ar AOD = 2ar BOC
= tri.AOD = tri.BOC
ar AOD + ar AOB = arAOB + ar BOC
arADB = ar ABC
ADB and ABC having common base AB and line between two lines AB and DC.
∴ AB || DC
Similarly we can prove that AD || BC.
∴ ABCD is a parallelogram.
∴ ar ABC = ar ADC
ar AOB + arBOC = arAOD + ar DOC
In quadrilateral ABCD, BD is diagonal
∴ ar ABD = ar BCD
ar AOD + arAOB = arBOC + ar COD
From equation (i) and (ii),
We have ;
arAOD - ar BOC = arBOC - ar AOD
So,
2ar AOD = 2ar BOC
= tri.AOD = tri.BOC
ar AOD + ar AOB = arAOB + ar BOC
arADB = ar ABC
ADB and ABC having common base AB and line between two lines AB and DC.
∴ AB || DC
Similarly we can prove that AD || BC.
∴ ABCD is a parallelogram.
Attachments:
Similar questions