Math, asked by OjasT, 1 year ago

PLEASE ANSWER ASAP!!!!!!

Attachments:

Answers

Answered by Rohit18Bhadauria
5

Given:

\bf{x^{\log_{4}3}+3^{\log_{4}x}=18}

To Find:

  • Value of x

Solution:

We know that,

\rightarrow\sf{a^{\log_{m}b}=b^{\log_{m}a},where\:m>0,m\neq1,a>0,b>0}

\rightarrow\sf{If\log_{m}a=b,then\:a=m^{b},where\:m>0,m\neq1,a>0}

\rightarrow\sf{3^{2}=9}

Now,

\longrightarrow\sf{x^{\log_{4}3}+3^{\log_{4}x}=18}

\longrightarrow\sf{3^{\log_{4}x}+3^{\log_{4}x}=18}

\longrightarrow\sf{2\times3^{\log_{4}x}=18}

\longrightarrow\sf{3^{\log_{4}x}=\dfrac{\cancel{18}}{\cancel{2}}}

\longrightarrow\sf{3^{\log_{4}x}=9}

\longrightarrow\sf{3^{\log_{4}x}=3^{2}}

On comparing power of 3 on both the sides, we get

\longrightarrow\sf{\log_{4}x=2}

\longrightarrow\sf{x=4^{2}}

\longrightarrow\sf\pink{x=16}

Hence, the value of x is 16.

Similar questions