Math, asked by Anonymous, 1 month ago

Please answer ASAP with explanation.

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

For any function, the maclaurin's series expansion is given by

 f(x) =   f(0) +  \frac{x}{1!}f^{  \prime} (0) +  \frac{ {x}^{2} }{2!} f^{  \prime \prime} (0) +  \frac{ {x}^{3} }{3!}f^{  \prime \prime \prime} (0) + ... \\

For  f(x)=e^{x}

 f ^{ \prime} (0) =   f ^{ \prime \prime} (0) =  f ^{ \prime \prime \prime} (0) = 1

So,

  {e}^{x} =   1 +  \frac{x}{1!}+  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{3} }{3!} + ... \\

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

We have to find the expansion for

\rm :\longmapsto\:f(x) =  {e}^{x}

So,

\rm :\longmapsto\:f(0) ={e}^{0} = 1

Let first find the derivatives of f(x).

\rm :\longmapsto\:f'(x) ={e}^{x}

\rm :\longmapsto\:f''(x) ={e}^{x}

\rm :\longmapsto\:f'''(x) ={e}^{x}

\rm :\longmapsto\:f''''(x) ={e}^{x}

Now, Let we find the value of these derivatives at x = 0

\rm :\longmapsto\:f'(0) ={e}^{0} = 1

\rm :\longmapsto\:f''(0) ={e}^{0} = 1

\rm :\longmapsto\:f'''(0) ={e}^{0} = 1

\rm :\longmapsto\:f''''(0) ={e}^{0} = 1

Now,

By Maclaurin's Series, we have

\boxed{ \sf{ \:f(x) = f(0) + xf'(0) + \dfrac{ {x}^{2} }{2!}f''(0) + \dfrac{ {x}^{3} }{3!}f'''(0) + \dfrac{ {x}^{4} }{4!}f''''(0) -  - }}

So, on substituting all the values evaluated above, we get

\rm :\longmapsto\: {e}^{x} = 1 + x + \dfrac{ {x}^{2} }{2!} + \dfrac{ {x}^{3} }{3!} + \dfrac{ {x}^{4} }{4!}+  -  -  -

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{ \underbrace{\boxed{ \bf{ \:Option  \:  \: \: B \:  \:  \: is \: \:  \:  correct}}}}

Additional Information :-

Let's solve one more problem!!

Question :- Find the expansion of cosx.

Solution :-

Given

\rm :\longmapsto\:f(x) =  cosx

So,

\rm :\longmapsto\:f(0) =  cos0 = 1

Let find few derivatives of f(x).

\rm :\longmapsto\:f'(x) =  -  sinx

\rm :\longmapsto\:f''(x) =  -  cosx

\rm :\longmapsto\:f'''(x) =  sinx

\rm :\longmapsto\:f''''(x) =  cosx

Now, Let find the value of derivatives at x = 0

\rm :\longmapsto\:f'(0) =  -  sin0 = 0

\rm :\longmapsto\:f''(0) =  -  cos0 =  - 1

\rm :\longmapsto\:f'''(0) =  sin0 = 0

\rm :\longmapsto\:f''''(0) =  cos0 = 1

Now,

By Maclaurin's Series, we have

\boxed{ \sf{ \:f(x) = f(0) + xf'(0) + \dfrac{ {x}^{2} }{2!}f''(0) + \dfrac{ {x}^{3} }{3!}f'''(0) + \dfrac{ {x}^{4} }{4!}f''''(0) -  - }}

So, on substituting all the values evaluated above, we get

\rm :\longmapsto\: cosx = 1  -  \dfrac{ {x}^{2} }{2!}  + \dfrac{ {x}^{4} }{4!}+  -  -  -

Similar questions