Physics, asked by f1931, 2 months ago

please answer bhai bhai please​

Attachments:

Answers

Answered by Yuseong
6

Answer:

3

Explanation:

As per the provided information in the given question, we have :

 \longmapsto \rm {2^{-x} \times 2^{10} = 2^{3x} \times  2^{-2}  }\\

We are asked to calculate the value of x.

Basically, in this question, we have to use the laws of exponents.

 \longmapsto \rm {2^{-x} \times 2^{10} = 2^{3x} \times  2^{-2}  }\\

As we know that,

  •  \bf a^m \times a^n = a^{m + n}

So, applying this law, we can say that,

 \longmapsto \rm {2^{-x+10} = 2^{3x+(-2)}  }\\

Removing the brackets in the exponents of the number in R.H.S.

 \longmapsto \rm {2^{-x+10} = 2^{3x-2}  }\\

Since, the bases are same. So, the powers must be equal. Now, equating the powers,

 \longmapsto \rm { -x+10 = 3x-2 }\\

Transposing like terms.

 \longmapsto \rm { 10 +2 = 3x +x}\\

Performing addition in both L.H.S and R.H.S.

 \longmapsto \rm {  12 = 4x}\\

Transposing 4 from R.H.S to L.H.S. Its arithmetic operator will get changed.

 \longmapsto \rm {  \dfrac{12}{4} = x}\\

Dividing 12 by 4.

 \longmapsto \bf { 3= x}\\

Value of x is 3.

 \rule{200}2

Laws of exponents :

 \boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\bf{Law \; of \; Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

Answered by NewGeneEinstein
0

Answer:-

 \\  \sf \longrightarrow \:  {2}^{ - x}  \times  {2}^{10}  =  {2}^{3x}  \times  {2}^{ - 2}  \\  \\  \sf \longrightarrow \:  {2}^{ - x + 10}  =  {2}^{3x + ( - 2)}  \\  \\  \sf \longrightarrow \:  {2}^{ - x + 10}  =  {2}^{3x - 2}  \\  \\  \sf \longrightarrow \:  - x + 10 = 3x - 2 \\  \\  \sf \longrightarrow \: 3x + x = 10 + 2 \\  \\  \sf \longrightarrow \: 4x = 12 \\  \\  \sf \longrightarrow \: x =  \frac{12}{4}  \\  \\  \sf \longrightarrow \: x = 3

Similar questions