Math, asked by dipalisamaddar9249, 5 months ago

Please answer both..... it's urgent ​

Attachments:

Answers

Answered by tennetiraj86
2

Answer:

1/abx is the answer for the given problem

Attachments:
Answered by Anonymous
0

Answer:

 \frac{ {x}^{2} \times  {y}^{3} \times mn  }{ {x}^{11} {y}^{12}  {m}^{2}  {n}^{2}  }  \times  \frac{ {x}^{8}  {y}^{9}mn }{ab}   \\   = \frac{ {x}^{2} \times  {y}^{3} \times mn \times  {x}^{8}  {y}^{9}  mn }{ {x}^{11}  {y}^{12} {m}^{2}  {n}^{2}   \times ab}  \\  =  \frac{ {x}^{2}   \times {x}^{8}  \times  {y}^{3} \times   {y}^{9}  \times  {m}^{1}  {n}^{1}  \times  {m}^{1}  {n}^{1} }{ {x}^{11}  \times  {y}^{12}  \times  {m}^{2} \times  {n}^{2} \times ab  }   \\  =  \frac{ {x}^{2 + 8} \times  {y}^{3 + 9}  \times  {m}^{1 + 1}   \times  {n}^{1 + 1} }{ {x}^{11}  \times  {y}^{12}  \times  {m}^{2} \times  {n}^{2}  \times ab }  \\  =  \frac{ {x}^{10} \times  {y}^{12}  \times  {m}^{2}  \times  {n}^{2}  }{ {x}^{11}  \times  {y}^{12} \times  {m}^{2} \times  {n}^{2}  \times ab  }  \\  =  \frac{ {x}^{10 - 11} \times  {y}^{12 - 12} \times  {m}^{2 - 2}   \times  {n}^{2 - 2}  }{ab}  \\  =  \frac{ {x}^{ - 1}  \times  {y}^{0} \times  {m}^{0}   \times  {n}^{0} }{ab}  \\  =  \frac{ {x}^{ - 1}  \times 1 \times 1 \times 1}{ab}  \\  =  \frac{ {x}^{ - 1} }{ab}  \\  =  \frac{1}{x \times ab}

I hope it will help you

Similar questions