Math, asked by firstlast6268, 2 months ago

please answer by explaining this ​

Attachments:

Answers

Answered by Anonymous
8

Given expression:-

  • \large{\sf{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}}

Answer:

We are given expression is \large{\sf{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}}

Notice, given expression is in form of (a-b)(a+b).

We know that :

  • \large{\sf{(a-b)(a+b)\:=\: a² - b²}}

Where,

  • a = √5
  • b = √2

Let expand :-

\large{\sf{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}}

\implies\large{\sf{(\sqrt{5})²-(\sqrt{2})²}}

\implies\large{\sf{(5 - 2)}}

\implies\large{\sf{3}}

Therefore,

  • \large{\sf{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})\:=\:3}}

More algebraic identities :-

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b + c)² = a² + b² + c² + 2( ab + bc + ca)

  • (a + b)³ = a³ + b³ + 3ab (a + b)

  • (a - b)³ = a³ - b³ - 3ab (a - b)

  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

  • (a + b - c)² = a² + b² + c² + 2ab - 2bc -2ca

  • a³ + b³ = (a+b)³ - 3ab (a + b)
Answered by srishanth30
2

Answer:

Hope this may help u

PLEASE MARK ME AS A BRAINLIST

Attachments:
Similar questions