Math, asked by vikramsinghr85, 2 days ago

please answer correct and fast​

Attachments:

Answers

Answered by Talpadadilip783
5

According to the question,

\begin{array}{l}  \displaystyle \rm \pmb{ L.H.S. }=\frac{1}{(\sec \theta-\tan \theta)}-\frac{1}{\cos \theta} \\  \\  \displaystyle \rm=\frac{1}{(\sec \theta-\tan \theta)} \times \frac{(\sec \theta+\tan \theta)}{(\sec \theta+\tan \theta)}-\sec \theta \\  \\  \displaystyle \rm =\frac{(\sec \theta+\tan \theta)}{\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}-\sec \theta \\  \\  \displaystyle \rm =(\sec \theta+\tan \theta)-\sec  \displaystyle \rm \theta \qquad \left[\therefore \sec ^{2} \theta-\tan ^{2} \theta=1\right] \\  \\  \displaystyle \rm =\tan \theta \end{array}

 \\   \pmb{ \rm R.H.S. }\rm =\dfrac{1}{\cos \theta}-\dfrac{1}{(\sec \theta+\tan \theta)}

\[ \begin{array}{l}  \displaystyle\rm  =\sec \theta-\frac{1}{(\sec \theta+\tan \theta)} \times \frac{(\sec \theta-\tan \theta)}{(\sec \theta-\tan \theta)} \\ \\  \\  \\  \displaystyle\rm=\sec \theta-\frac{(\sec \theta-\tan \theta)}{\left(\sec ^{2} \theta-\tan ^{2} \theta\right)} \\ \\  \\  \\  \displaystyle\rm=\sec \theta-(\sec \theta-\tan \theta) \quad[\because  \left.\sec ^{2} \theta-\tan ^{2} \theta=1\right] \\ \\  \\  \\  \displaystyle\rm=\tan \theta . \\ \\  \\  \\  \displaystyle\rm\therefore \text { L. H.S. }=\text { R.H.S. } \end{array} \]

Answered by SURAJSAINI69
4

Answer:

a noun is the name of person place animal or things.

Attachments:
Similar questions