Math, asked by Jiyaa021, 1 day ago

please answer correct option
don't spam bakwas here

Attachments:

Answers

Answered by yashj4521
2

Step-by-step explanation:

ncnfnfnnfnfngbfbfnnvnfnvnfnnfnvnvnf

Attachments:
Answered by ajr111
7

Answer:

Option (a) 0 is the answer

Step-by-step explanation:

Given :

\mathrm{cosec^{-1}2 + sin^{-1}\bigg(-\dfrac{1}{2}\bigg)}

To find :

The value of the given expression from the options :

(a) 0

(b) π/3

(c) π

(d) 2π/3

Solution :

\longmapsto \mathrm{cosec^{-1}2 + sin^{-1}\bigg(-\dfrac{1}{2}\bigg)}

We know that,

\boxed{\mathrm{cosec^{-1}x = sin^{-1}\bigg(\dfrac{1}{x}\bigg)}}

\implies \mathrm{sin^{-1}\bigg(\dfrac{1}{2}\bigg) + sin^{-1}\bigg(-\dfrac{1}{2}\bigg)}

We know that,

\boxed{\mathrm{sin^{-1}(-x) = -sin^{-1}x \ ; \ x \in [-1,1]}}

Here, 1/2 is in between -1 and 1, so

\implies \mathrm{sin^{-1}\bigg(\dfrac{1}{2}\bigg) - sin^{-1}\bigg(\dfrac{1}{2}\bigg)}

\implies \mathrm{\cancel{sin^{-1}\bigg(\dfrac{1}{2}\bigg)} - \cancel{sin^{-1}\bigg(\dfrac{1}{2}\bigg)}}

\implies \underline{\underline{\Large{\textbf{0}}}}

\therefore \underline{\boxed{\mathbf{cosec^{-1}2 + sin^{-1}\bigg(-\dfrac{1}{2}\bigg) = 0}}}

Thus, (a) 0 is the correct answer.

Hope it helps!!

Similar questions