Math, asked by deekshadalavai220907, 3 months ago

Please answer fast

I will give brainlist answer

I am writing FA​

Attachments:

Answers

Answered by yashaswisahu53
0

Step-by-step explanation:

This is answer

mark me as brainlist

plz plz

Attachments:
Answered by Rubellite
12

\Large{\underbrace{\sf{\red{Required\:Solution:}}}}

\displaystyle{\bf{ \dfrac{ 3^{-5} \times 10^{-5} \times 125}{ 5^{-7} \times 6^{-5}}}}

Sol'n. \displaystyle{\sf{\dfrac{ 3^{-5} \times 10^{-5} \times 125}{ 5^{-7} \times 6^{-5}}}}

\longrightarrow{\sf{ \dfrac{ 3^{-5} \times (2\times 5)^{-5} \times 5^{3}}{ 5^{-7} \times (2 \times 3)^{-5}}}}

\longrightarrow{\sf{ \dfrac{3^{-5} \times 2^{-5} \times 5^{-5} \times 5^{3}}{ 5^{-7} \times 2^{-5} \times 3^{-5}}}}

  • Exponential law used - \displaystyle{\bf{ a^{m} \times a^{n} = a^{m+n}}}

\longrightarrow{\sf{ \dfrac{3^{-5} \times 2^{-5} \times 5^{-5+3}}{ 5^{-7} \times 2^{-5} \times 3^{-5}}}}

\longrightarrow{\sf{ \dfrac{3^{-5} \times 2^{-5} \times 5^{-2}}{ 5^{-7} \times 2^{-5} \times 3^{-5}}}}

  • Law of exponent used - \displaystyle{\bf{ \dfrac{a^{m}}{a^{n}} = a^{m-n}}}

\longrightarrow{\sf{ 3^{-5-(-5)} \times 2^{-5-(-5)} \times 5^{-2-(-7)}}}

\longrightarrow{\sf{ 3^{0} \times 2^{0} \times 5^{-2+7}}}

  • Law of exponent used - \displaystyle{\bf{a^{0} =1}}

\longrightarrow{\sf{ 1\times 1 \times 5^{5}}}

\large{:}\implies{\boxed{\sf{\red{3,125}}}}

__________________________

Similar questions