Math, asked by ssvmr2007, 4 months ago

please answer fast, it's urgent ​

Attachments:

Answers

Answered by anindyaadhikari13
6

Required Answer:-

Given:

  •  \rm {x}^{1 -   \log_{5}(x) } = 0.04

To find:

  • The value of x.

Solution:

Given that,

 \rm \implies {x}^{1 -   \log_{5}(x) } = 0.04

 \rm \implies {x}^{1 -   \log_{5}(x) }  =  \dfrac{4}{100}

 \rm \implies {x}^{1 -   \log_{5}(x) }  =  \dfrac{1}{25}

Taking logarithm of base 5 on both sides, we get,

 \rm \implies  \log_{5} \big({x}^{1 -   \log_{5}(x) } \big)  =  log_{5} \bigg( \dfrac{1}{25} \bigg)

 \rm \implies  (1 -  log_{5}(x) ) \log_{5}(x) =  log_{5}(  {5}^{ - 2} )

 \rm \implies  (1 -  log_{5}(x) ) \log_{5}(x) =   - 2log_{5}(5)

 \rm \implies  (1 -  log_{5}(x) ) \log_{5}(x) =   - 2

Let us assume that,

 \rm \implies y =   \log_{5}(x)

Therefore,

 \rm \implies (1 - y)y =  - 2

 \rm \implies  -  {y}^{2} + y =  - 2

 \rm \implies {y}^{2} -  y - 2 = 0

 \rm \implies {y}^{2} -  2y  + y- 2 = 0

 \rm \implies y(y-  2) + 1(y- 2 )= 0

 \rm \implies (y+ 1)(y- 2 )= 0

By zero product rule,

Either y + 1 = 0 or y - 2 = 0

Therefore,

➡ y = -1, 2

So, when y = -1

 \rm \implies \log_{5}(x)  =  - 1

 \rm \implies x =  {5}^{ - 1}

 \rm \implies x = \dfrac{1}{5}

Again, when y = 2

 \rm \implies \log_{5}(x)  = 2

 \rm \implies x =  {5}^{2}

 \rm \implies x =25

Hence, the possible values of x are 1/5 and 25.

Answer:

  • The possible values of x are 1/5 and 25.
Answered by BrainlyKingdom
3

\rm{x^{1-\log _5\left(x\right)}=0.04}

  • Apply Exponent Rules

\to\rm{\displaystyle e^{\left(1-\log _5\left(x\right)\right)\ln \left(x\right)}=0.04}

\to\rm{\displaystyle \ln \left(e^{\left(1-\log _5\left(x\right)\right)\ln \left(x\right)}\right)=\ln \left(0.04\right)}

\to\rm{\displaystyle \left(1-\log _5\left(x\right)\right)\ln \left(x\right)\ln \left(e\right)=\ln \left(0.04\right)}

\to\rm{\displaystyle \left(1-\log _5\left(x\right)\right)\ln \left(x\right)=\ln \left(0.04\right)}

  • Apply Log Rules

\to\rm{\displaystyle \left(1-\log _5\left(x\right)\right)\frac{\log _5\left(x\right)}{\log _5\left(e\right)}=\ln \left(0.04\right)}

\to\rm{\displaystyle \frac{\log _5\left(x\right)\left(1-\log _5\left(x\right)\right)}{\log _5\left(e\right)}=\ln \left(0.04\right)}

  • Rewrite The Equation With log₅(x) = u

\to\rm{\displaystyle \frac{u\left(1-u\right)}{\log _5\left(e\right)}=\ln \left(0.04\right)}

\to\rm{\displaystyle \frac{u\left(1-u\right)}{\log _5\left(e\right)}\log _5\left(e\right)=\ln \left(0.04\right)\log _5\left(e\right)}

\to\rm{\displaystyle u\left(1-u\right)=\frac{\ln \left(0.04\right)}{\ln \left(5\right)}}

\to\rm{\displaystyle u-u^2=\frac{\ln \left(0.04\right)}{\ln \left(5\right)}}

\to\rm{\displaystyle u-u^2-\frac{\ln \left(0.04\right)}{\ln \left(5\right)}=\frac{\ln \left(0.04\right)}{\ln \left(5\right)}-\frac{\ln \left(0.04\right)}{\ln \left(5\right)}}

\to\rm{\displaystyle -u^2+u+2=0}

  • Solve with the quadratic formula

\to\rm{\displaystyle u_{1,\:2}=\frac{-1\pm \sqrt{1^2-4\left(-1\right)\cdot \:2}}{2\left(-1\right)}}

\to\rm{\displaystyle u_{1,\:2}=\frac{-1\pm \:3}{2\left(-1\right)}}

  • Separate the Solutions

\to\rm{\displaystyle u_{1}=\frac{-1+3}{2(-1)}, u_{2}=\frac{-1-3}{2(-1)}}

  • The solutions to he quadratic equation are

\to\rm{\displaystyle u=-1,\:u=2}

  • Substitute Back u = log₅(x) , Solve For x

\boxed{\to\rm{x=\frac{1}{5},\:x=25}}

Similar questions