please answer full anwer not only answer
Answers
The value of x
Given that
can be rewritten as
We know,
So, using this identity, we get
We know,
Verification :-
Given equation is
Case - 1 When x = 12
Hence, Verified
Case - 2 When x = - 12
Hence, Verified
Additional Information :-
\large\underline{\sf{To\:Find - }}
ToFind−
The value of x
\large\underline{\sf{Solution-}}
Solution−
Given that
\rm :\longmapsto\:log( {x}^{2} - 44) = 2:⟼log(x
2
−44)=2
can be rewritten as
\rm :\longmapsto\:log( {x}^{2} - 44) = 2 \times 1:⟼log(x
2
−44)=2×1
We know,
\boxed{ \bf{ \: log10 = 1}}
log10=1
So, using this identity, we get
\rm :\longmapsto\:log {(x}^{2} - 44) = 2log10:⟼log(x
2
−44)=2log10
We know,
\boxed{ \bf{ \: log {x}^{y} = y \: logx}}
logx
y
=ylogx
\rm :\longmapsto\:log {(x}^{2} - 44) = log {10}^{2} :⟼log(x
2
−44)=log10
2
\rm :\longmapsto\: {x}^{2} - 44 = 100:⟼x
2
−44=100
\rm :\longmapsto\: {x}^{2} = 100 + 44:⟼x
2
=100+44
\rm :\longmapsto\: {x}^{2} = 144:⟼x
2
=144
\rm :\longmapsto\: {x}^{2} = {12}^{2} :⟼x
2
=12
2
\bf\implies \:x \: = \: \pm \: 12⟹x=±12
Verification :-
Given equation is
\rm :\longmapsto\:log( {x}^{2} - 44) = 2:⟼log(x
2
−44)=2
Case - 1 When x = 12
\rm :\longmapsto\:log( {12}^{2} - 44) = 2:⟼log(12
2
−44)=2
\rm :\longmapsto\:log(144 - 44) = 2:⟼log(144−44)=2
\rm :\longmapsto\:log(100) = 2:⟼log(100)=2
\rm :\longmapsto\:log( {10}^{2} ) = 2:⟼log(10
2
)=2
\rm :\longmapsto\:2log( {10}^{} ) = 2:⟼2log(10
)=2
\rm :\longmapsto\:2 = 2:⟼2=2
Hence, Verified
Case - 2 When x = - 12
\rm :\longmapsto\:log( {( - 12)}^{2} - 44) = 2:⟼log((−12)
2
−44)=2
\rm :\longmapsto\:log(144 - 44) = 2:⟼log(144−44)=2
\rm :\longmapsto\:log(100) = 2:⟼log(100)=2
\rm :\longmapsto\:log(10) {}^{2} = 2:⟼log(10)
2
=2
\rm :\longmapsto\:2log(10) {}^{} = 2:⟼2log(10)
=2
\rm :\longmapsto\:2 = 2:⟼2=2
Hence, Verified
Additional Information :-
\boxed{ \bf{ \: log(xy) = logx \: + \: logy}}
log(xy)=logx+logy
\boxed{ \bf{ \: log(x \div y) = logx \: - \: logy}}
log(x÷y)=logx−logy
\boxed{ \bf{ \: log {x}^{y} = y \: logx}}
logx
y
=ylogx
\boxed{ \bf{ \: log_{x}(x) = 1}}
log
x
(x)=1
\boxed{ \bf{ \: log_{x}(y) = \frac{logy}{logx} }}
log
x
(y)=
logx
logy
\boxed{ \bf{ \: log_{ {x}^{y} }( {x}^{z} ) = \frac{z}{y}}}
log
x
y
(x
z
)=
y
z
\boxed{ \bf{ \: {e}^{logx} = x}}
e
logx
=x
\boxed{ \bf{ \: {e}^{ylogx} = {x}^{y} }}
e
ylogx
=x
y
\boxed{ \bf{ \: {a}^{ log_{a}(x) } = x}}
a
log
a
(x)
=x
Step-by-step explanation: