Math, asked by neitsei, 10 months ago

please answer
I'll mark you as brainliest​

Attachments:

Answers

Answered by Anonymous
1

\red{\underline{\underline{Answer:}}}

\sf{(secA+tanA)(1-sinA)=cosA}

\sf\pink{To \ find:}

\sf{(secA+tanA)(1-sinA)}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{(secA+tanA)(1-sinA)}}

\sf{sec=\frac{1}{cos}}

\sf{tan=\frac{sin}{cos}}

\sf{Trignometric \ ratio}

\sf{\implies{(\frac{1}{cosA}+\frac{sinA}{cosA})(1-sinA)}}

\sf{\implies{(\frac{1+sinA}{cosA})(1-sinA)}}

\sf{\implies{\frac{1-sin^{2}A}{cosA}}}

\sf{1-sin^{2}=cos^{2}}

\sf{... Trignometric \ identity}

\sf{\implies{\frac{cos^{2}A}{cosA}}}

\sf{\implies{cosA}}

\sf\purple{\tt{\therefore{(secA+tanA)(1-sinA)=cosA}}}

Answered by TheSentinel
41

\huge\underline\mathfrak\red{Question:}

( \sec(A)  +  \tan(A) )(1 -  \sin(A) ) = ?

A) \:  \sec(A)

B) \:  \sin(A)

C) \:  \cosec(A)

D) \:  \cos(A)

___________________________________________

\huge\underline\mathfrak\green{Answer:}

\rm\purple{D) \:  \cos(A)}

___________________________________________

\sf\large\underline\pink{Given:}

( \sec(A)  +  \tan(A) )(1 -  \sin(A) )

___________________________________________

\sf\large\underline\pink{To \ find:}

( \sec(A)  +  \tan(A) )(1 -  \sin(A) ) = ?

___________________________________________

\huge\underline\mathfrak\blue{Solution:}

\rm{given }

( \sec(A)  +  \tan(A) )(1 -  \sin(A) )

\rm{We \ know ,}

 \sec( \alpha )  =  \frac{1}{ \cos( \alpha ) }

\rm{and}

 \tan( \alpha  )  =   \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

\rm{By \ using \ trigonometric \ formulae }

( \frac{1}{ \cos(A) }  =  \frac{ \sin(A) }{ \cos(A) } )(1 -  \sin(A) )

( \frac{1 +  \sin(A) }{  \cos(A) } )(1 -  \sin(A) )

 \frac{1 -  { \sin(A) }^{2} }{ \cos(A) }

but \:  \: 1 -   { \sin(A) }^{2}  =  { \cos(A) }^{2}

 \frac{ { \cos(A) }^{2} }{ \cos(A) }

 \cos(A)

\rm\orange{( \sec(A)  +  \tan(A) )(1 -  \sin(A) ) = \cos(A)}

___________________________________________

\rm\red{Hope \ it \ helps \ :))}

Similar questions