Math, asked by payal8690, 10 months ago

please answer in nb
intelligent can only solve in nb
solve 1 question​

Attachments:

Answers

Answered by Delta13
2

Given:

  • 2x² -4x -1
  • alpha and beta are zeroes of the polynomial

To find:

The \:  valu e  \: of \: ( \alpha  +  \beta ), ( \alpha  \beta ) \: and \: ( \alpha  +  \beta ) {}^{2}

Solution:

Comparing 2x² -4x -1 with standard equation ax² +bx +c

We get,

a = 2

b = -4

c = -1

We know that

Sum  \: of  \: zeroes \:  =  \frac{ - (coefficient \: of \: x)}{ \:  \:  \: coefficient \: of \:  {x}^{2} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  =  \frac{ - b}{a}

Here, \:\alpha  \: and \:  \beta  \: are \: zeroes \:

So,

 \implies \:  \alpha  +  \beta  =   \frac{ - ( - 4)}{2}  \\  \\   \implies \alpha  +  \beta  =  \frac{4}{2}  \\  \\  \implies \:  \alpha  +  \beta  = 2

Also,

Product  \: of  \: zeroes  =  \frac{constant \: term }{coefficient \: of \:  {x}^{2} }  \\  \\  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{c}{a}

\large \implies \: ( \alpha  \beta ) =  \:  \frac{ - 1}{ \: 2}

We will use algebraic identity to find the value of (α²+ β²).

We know that

=> (a+b)² = a² + b² + 2ab

=> (a+b)² -2ab = a² + b²

Similarly,

 \alpha  {}^{2}  +  { \beta }^{2}  = ( \alpha  +  \beta ) {}^{2}  - 2 (\alpha  \beta )

Now we will substitute the values from above

 \implies \:  { \alpha }^{2}  +  { \beta }^{2}  = (2) {}^{2}  - 2 \times ( \frac{ - 1}{2} ) \\  \\  \implies \:  { \alpha }^{2}  +  { \beta }^{2}  = 4 +  \frac{ \cancel2} { \cancel2} \\   \\  \implies \:  { \alpha }^{2}  +  { \beta }^{2}  = 4

Hope it helps you.

If it helps you then Mark as brainliest.

:)

Similar questions