Math, asked by Imranur, 1 year ago

Please answer it as fast as possible and please define it.

Attachments:

Answers

Answered by Mankuthemonkey01
15

Answer:

a = \sf\frac{47}{2} and b = \sf\frac{21}{2}

Step-by-step explanation:

Given

\sf\frac{7 + 3\sqrt{5}}{7 - 3\sqrt{5}} = a + b\sqrt{5}\\\\

Let's do some rationalisation.

For rationalisation, we will multiply rationalising factor with both numerator and denominator. Rationalising factor of 7 - 3√5 is 7 + 3√5. So we get

\sf\frac{7+3\sqrt{5}}{7-3\sqrt{5}}=a + b\sqrt{5}\\\\= \frac{(7+3\sqrt{5})(7+3\sqrt{5})}{(7-3\sqrt{5})(7+3\sqrt{5})}=a + b\sqrt{5}\\\\=\frac{(7+3\sqrt{5})^2}{7^2 - (3\sqrt{5})^2}=a + b\sqrt{5}\\\\= \frac{49+45+42\sqrt{5}}{49-45}= a + b\sqrt{5}\\\\\frac{94+42\sqrt{5}}{4} = a + b\sqrt{5}\\\\= \frac{94}{4}+\frac{42\sqrt{5}}{4}=a + b\sqrt{5}\\\\= \frac{47}{2}+ \frac{21}{2}\sqrt{5}= a + b\sqrt{5}

Now, on comparing both sides, we can say that, a = 47/2 and b = 21/2

Answered by StarGazer001
2

Answer:-

Given,

 \mathbf{ \frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} } = a + b \sqrt{5} }

We have to rationalize the denominator.

Rationalizing factor of 7-3√5 is 7+3√5.

Multiply 7+3√5 with both numerator and denominator.

 \mathbf{ =  \frac{(7 + 3 \sqrt{5})(7 + 3 \sqrt{5}  }{(7 - 3 \sqrt{5}(7 + 3 \sqrt{5}  }  = a + b \sqrt{5} }

 \mathbf{  \frac{ {(7 + 3 \sqrt{5}) }^{2} }{ {(7)}^{2}  - ( {3 \sqrt{5} }^{2}) } = a + b \sqrt{5} }

 \mathbf{[ {(a + b)}^{2}  =  {a}^{2} + 2ab +  {b}^{2}]}

 \mathbf{[(a + b)(a - b) =  {a}^{2} -  {b}^{2}]}

 \mathbf{ \frac{49 + 42 \sqrt{5} + 45 }{49 - 45}  = a + b \sqrt{5} }

 \mathbf{ \frac{94 + 42 \sqrt{5} }{49 - 45}  = a + b \sqrt{5} }

 \mathbf{ \frac{94 + 42 \sqrt{5} }{4}  = a + b \sqrt{5} }

 \mathbf{ \frac{94}{4}  +  \frac{42 \sqrt{5} }{4}  = a + b \sqrt{5} }

 \mathbf{ \frac{47}{2}  +  \frac{21 }{2}  \sqrt{5}  = a + b \sqrt{5} }

On comparing both the sides ,

 \mathbf{a =  \frac{47}{2} ,b \sqrt{5} =  \frac{21}{2}  \sqrt{5} }

[√5 gets cancelled]

  \boxed{Therefore \: a =  \frac{47}{2} ,b =  \frac{21}{2} }

Similar questions