Math, asked by iloveu057, 1 month ago

please answer it correctly​

Attachments:

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\int(4x^3+2x)e^{x^4+x^2}\,dx=e^{f(x)}+C}

\sf{Put\,\,\,\,x^4+x^2=t}

\sf{\implies\,(4x^3+2x)dx=dt}

So,

\sf{\implies\,\displaystyle\int\,e^{t}\,dt=e^{f(x)}+C}

\sf{\implies\,e^{t}+C=e^{f(x)}+C}

\sf{\implies\,e^{x^4+x^2}+C=e^{f(x)}+C}

\sf{So,\,\,\,f(x)=x^4+x^2}

Finding the minimum value of f(x),

\sf{f^{\prime}(x)=4x^3+2x=0}

\sf{\implies\,2x(2x^2+1)=0}

\sf{\implies\,x=0}

\sf{f^{\prime\prime}(x)=12x^2+2}

At x=0, f''(x) is positive

So, at x = 0, f(x) attains its minimum value

So,

Minimunm value of f(x)=0

Similar questions