Math, asked by amrindersingh5680, 3 months ago

please answer it correctly and step by step. don't spam​

Attachments:

Answers

Answered by ᎷᎪᎠᎪᎡᎪ
1

Answer:

f′(x)f′(x) gives you the slope of ff in x

Quite easily, if f′(x)f′(x) is positive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=0

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write that

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write thatf′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1

ositive, f(x)f(x) increases. If f′(x)f′(x) is negative, f(x)f(x) decreases.We know that, for y∈R∗+y∈R∗+0<y<1⇔ln(y)<00<y<1⇔ln(y)<0ln(1)=0ln(1)=01<y⇔ln(y)>01<y⇔ln(y)>0So we can write thatf′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)>0⇔ln(x2x+1)>0⇔x2x+1>1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1f′(x)<0⇔ln(x2x+1)<0⇔x2x+1<1If x<−1

Answered by twinkletwinkle1326
1

Answer:

₹ 1200

Given ,a = 10 m

WKT : Curved surface area = 4a square

= 4 * 10 * 10 = 400 m sq.

Cost of painting 1 m sq = 3 Rs

Cost of painting 400 m sq = 1200 Rs

Similar questions