Math, asked by pratibhakaware14, 1 month ago

please answer it i am not getting it....​

Attachments:

Answers

Answered by amansharma264
6

EXPLANATION.

\implies \dfrac{1}{\sqrt{3}+ \sqrt{2}  } - \dfrac{2}{\sqrt{5} - \sqrt{3} } - \dfrac{3}{\sqrt{2}- \sqrt{5} }

As we know that,

Solve this equation one by one, we get.

Rationalizes the equation, we get.

\implies \dfrac{1}{\sqrt{3} + \sqrt{2} }

\implies \dfrac{1}{\sqrt{3} + \sqrt{2} }  \times \dfrac{\sqrt{3} - \sqrt{2} }{\sqrt{3} - \sqrt{2} }

\implies \dfrac{\sqrt{3} - \sqrt{2} }{[(\sqrt{3})^{2} - (\sqrt{2} )^{2} ] }

\implies \dfrac{\sqrt{3}- \sqrt{2}  }{[3 - 2]} = \sqrt{3} - \sqrt{2} . - - - - - (1).

\implies \dfrac{2}{\sqrt{5}- \sqrt{3}  }

\implies \dfrac{2}{\sqrt{5}- \sqrt{3}  }  \times \dfrac{\sqrt{5} + \sqrt{3} }{\sqrt{5}+ \sqrt{3}  }

\implies \dfrac{2[\sqrt{5}+ \sqrt{3}  ]}{[(\sqrt{5})^{2} - (\sqrt{3} )^{2}  }

\implies \dfrac{2[\sqrt{5} + \sqrt{3} ]}{5 - 3  }  = \dfrac{2[\sqrt{5}+ \sqrt{3} ] }{2}

\implies \sqrt{5} + \sqrt{3} . - - - - - (2).

\implies \dfrac{3}{\sqrt{2}- \sqrt{5}  }

\implies \dfrac{3}{\sqrt{2}- \sqrt{5}  }  \times \dfrac{\sqrt{2} + \sqrt{5} }{\sqrt{2} + \sqrt{5} }

\implies \dfrac{3[\sqrt{2} + \sqrt{5}] }{[(\sqrt{2})^{2} - (\sqrt{5} )^{2}]  }

\implies \dfrac{3[\sqrt{2} + \sqrt{5}] }{2 - 5  }  = \dfrac{3[\sqrt{2}+ \sqrt{5}  ]}{-3}

\implies - [\sqrt{2} + \sqrt{5} ]. - - - - - (3).

Write equation in original form, we get.

\implies [\sqrt{3} - \sqrt{2} ] - [\sqrt{5} + \sqrt{3} ] - [- (\sqrt{2} + \sqrt{5} )].

\implies \sqrt{3} - \sqrt{2} - \sqrt{5} - \sqrt{3} + \sqrt{2} + \sqrt{5} .

\implies 0

Answered by MathHacker001
10

\large\bf\underline\red{Answer \:  :-}

Here, we three fraction we solve all fraction one by one, first rationalize the all fraction.

1) 1/3+2

\sf\implies{ \frac{1}{ \sqrt{3} +  \sqrt{2}  } \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }   } \\  \\ \sf\implies{ \frac{ \sqrt{3}  -  \sqrt{2} }{( \sqrt{3} ) {}^{2}  -  (\sqrt{2}) {}^{2}  } } \\  \\ \sf\implies{ \sqrt{3}  -  \sqrt{2} \:  \:  \:  \:  \: ( \because3 - 2 = 1)} \\  \\ \sf\implies \pink{ \sqrt{3} -  \sqrt{2} \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)  }

__________________________________________

2) 2/5-3

\sf\implies{ \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  } } \\  \\ \sf\implies{ \frac{2( \sqrt{5}  +  \sqrt{3}) }{( \sqrt{5}) {}^{2} - ( \sqrt{3}  ) {}^{2}  } } \\  \\ \sf\implies{ \frac{ \cancel {2}( \sqrt{5}  +  \sqrt{3}) }{ \cancel{2}} } \\  \\ \sf\implies \pink{ \sqrt{5} +  \sqrt{3} \:  \:  \:  \:  \:  \:  \:  \:  \: ...(2)  }

_______________________________________________

3) 3/2-5

\sf\implies{ \frac{3}{ \sqrt{2} -  \sqrt{5}  }  \times  \frac{ \sqrt{2}  +  \sqrt{5} }{ \sqrt{2}  +  \sqrt{5} } } \\  \\ \sf\implies{ \frac{  3( \sqrt{2}  +  \sqrt{5}) }{( \sqrt{2} ) {}^{2} -  (\sqrt{5}) {}^{2}   } } \\  \\ \sf\implies{ \frac{ \cancel{3}( \sqrt{2}  +  \sqrt{5}) }{ \cancel{ - 3}} } \\  \\ \sf\implies \pink{ -  \sqrt{2}   -   \sqrt{5} \:  \:  \:  \:  \:  \:  \:  \: ...(3) }

_________________________________________

Now,

\small\sf\dashrightarrow{ \sqrt{3}  -  \sqrt{2}  - ( \sqrt{5}  +  \sqrt{3}) - (  - \sqrt{2}   -   \sqrt{5} ) } \\  \\ \small\sf\dashrightarrow{ \sqrt{3} -  \sqrt{2}  -  \sqrt{5}   - \sqrt{3}  +  \sqrt{2}  +  \sqrt{5}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\sf\dashrightarrow{ \sqrt{3} \:  \:   \cancel{ -  \sqrt{2} } -  \sqrt{5}  -  \sqrt{3}  \:  \:  \cancel{ +  \sqrt{2} } +  \sqrt{5} } \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\sf\dashrightarrow{ \sqrt{ 3} \:  \:  \cancel{ -  \sqrt{5} }  -  \sqrt{3}  \:  \:  \cancel{ +  \sqrt{5} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\sf\dashrightarrow{ \sqrt{3}  -  \sqrt{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\  \small\sf\dashrightarrow{0} \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

0 is the answer.

⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛⬛

Similar questions