Please answer it im having a test
Attachments:
Answers
Answered by
1
Step-by-step explanation:
Comparing both sides, we get,
and,
Answered by
0
$$\begin{lgathered}\frac{5 + \sqrt{2} }{5 - \sqrt{2} } = a + b \sqrt{2} \\ = > \frac{5 + \sqrt{2} }{5 - \sqrt{2} } \times \frac{5 + \sqrt{2} }{5 + \sqrt{2} } = a + b \sqrt{2} \\ = > \frac{ {(5 - \sqrt{2}) }^{2} }{ {(5)}^{2} - { \sqrt{(2)} }^{2} } = a + b \sqrt{2} \\ = > \frac{ {(5)}^{2} + 2 \times 5 \times \sqrt{2} + { \sqrt{(2)} }^{2} }{25 - 2} = a + b \sqrt{2} \\ = > \frac{25 + 10 \sqrt{2} + 2 }{23} = a + b \sqrt{2} \\ = > \frac{27 + 10 \sqrt{2} }{23}\end{lgathered}$$
Comparing both sides, we get,
$$a = \frac{27}{23}$$
and,
$$\begin{lgathered}b \sqrt{2} = \frac{10 \sqrt{2} }{23} \\ = > b = \frac{10}{23}\end{lgathered}$$
Similar questions