Math, asked by sidhudilshan004, 9 months ago

Please answer it im having a test​

Attachments:

Answers

Answered by dangerousqueen01
1

Step-by-step explanation:

 \frac{5 +  \sqrt{2} }{5 -  \sqrt{2} }  = a + b \sqrt{2} \\ =  > \frac{5 +  \sqrt{2} }{5 -  \sqrt{2} } \times  \frac{5 +  \sqrt{2} }{5 +  \sqrt{2} }  = a + b \sqrt{2}  \\  =  >  \frac{ {(5 -  \sqrt{2}) }^{2} }{ {(5)}^{2} -  { \sqrt{(2)} }^{2}  }  = a + b \sqrt{2}  \\  =  >  \frac{ {(5)}^{2} + 2 \times 5 \times  \sqrt{2}  +  { \sqrt{(2)} }^{2}  }{25 - 2}  = a + b \sqrt{2}  \\  =  >  \frac{25 + 10 \sqrt{2} + 2 }{23}  = a + b \sqrt{2}  \\  =  >  \frac{27 + 10 \sqrt{2} }{23}

Comparing both sides, we get,

a =  \frac{27}{23}

and,

b  \sqrt{2} =  \frac{10 \sqrt{2} }{23}  \\  =  > b =  \frac{10}{23}

Answered by Anonymous
0

 \huge{ \underline{ \bold{ᴀɴsᴡᴇʀ....{ \heartsuit}}}}

$$\begin{lgathered}\frac{5 + \sqrt{2} }{5 - \sqrt{2} } = a + b \sqrt{2} \\ = > \frac{5 + \sqrt{2} }{5 - \sqrt{2} } \times \frac{5 + \sqrt{2} }{5 + \sqrt{2} } = a + b \sqrt{2} \\ = > \frac{ {(5 - \sqrt{2}) }^{2} }{ {(5)}^{2} - { \sqrt{(2)} }^{2} } = a + b \sqrt{2} \\ = > \frac{ {(5)}^{2} + 2 \times 5 \times \sqrt{2} + { \sqrt{(2)} }^{2} }{25 - 2} = a + b \sqrt{2} \\ = > \frac{25 + 10 \sqrt{2} + 2 }{23} = a + b \sqrt{2} \\ = > \frac{27 + 10 \sqrt{2} }{23}\end{lgathered}$$

Comparing both sides, we get,

$$a = \frac{27}{23}$$

and,

$$\begin{lgathered}b \sqrt{2} = \frac{10 \sqrt{2} }{23} \\ = > b = \frac{10}{23}\end{lgathered}$$

Similar questions