Math, asked by ChrisRog, 1 year ago

Please Answer me fast..

Attachments:

Answers

Answered by rockbottom619rip
3

THERE YOU GO BUDDY

(a) Let p(x) = x^3 + ax^2 + bx + c

Let a, p and y be the zeroes of the given cubic polynomial p(x).

∴  α = -1                                        [given]

and p(−1) = 0

⇒ (-1)^3 + a(-1)^2 + b(-1) + c = 0

⇒ -1 + a- b + c = 0

⇒ c = 1 -a + b                                                             …(i)

We know that,

Product of all zeroes = (-1)^3.Constant term/Coefficient of x^3 = -c/1

αβγ = -c

⇒ (-1)βγ = −c                                                                             [∴α = -1]

⇒ βγ = c

⇒ βγ = 1 -a + b                                                                [from Eq. (i)]

Hence, product of the other two roots is 1 -a + b.

If the answer is satisfying,give me a hell yeah...


rockbottom619rip: If it wouldn't be a trouble for you..mark it as the brainliest if you can..would be very helpful..:^)
Similar questions