Math, asked by meghanach11, 1 year ago

please answer me this question​

Attachments:

Answers

Answered by Anonymous
6

Solution :

 \tt log_x \Bigg[log_4  \bigg[log_x \bigg(5 {x}^{2}  + 4 {x}^{3}  \bigg) \bigg] \Bigg] = 0

 \implies \tt  {x}^{0 }  = log_4  \bigg[log_x \bigg(5 {x}^{2}  + 4 {x}^{3}  \bigg) \bigg]

[ Because logₐN = x ⇔ a^x = N ]

 \implies \tt  1 = log_4  \bigg[log_x \bigg(5 {x}^{2}  + 4 {x}^{3}  \bigg) \bigg]

[ Because a^0 = 1 ]

 \implies \tt  log_44 = log_4  \bigg[log_x \bigg(5 {x}^{2}  + 4 {x}^{3}  \bigg) \bigg]

[ Because logₐa = 1 ]

Comparing on both sides

 \implies \tt  4 =  log_x \bigg(5 {x}^{2}  + 4 {x}^{3}  \bigg)

 \implies \tt log_x \bigg(5 {x}^{2}  + 4 {x}^{3}  \bigg)  = 4

 \implies \tt  {x}^{4}  = 5 {x}^{2}  + 4 {x}^{3}

[ Because logₐN = x ⇔ a^x = N ]

 \implies \tt  {x}^{4}  - 4 {x}^{3}  - 5 {x}^{2}  = 0

 \implies \tt   {x}^{2} ( {x}^{2}   - 4x - 5) = 0

 \implies \tt {x}^{2}   - 4x - 5= 0

Splitting the middle term

 \implies \tt {x}^{2}   - 5x + x - 5= 0

 \implies \tt x(x - 5) + 1(x - 5) = 0

 \implies \tt (x + 1)(x - 5) = 0

 \implies \tt x + 1 = 0 \quad or \quad x - 5 = 0

 \implies \tt x =  - 1 \quad or \quad x  = 5

[ Negleting x = - 1 because bases of logarithms cannot be negative and 0 ]

 \implies \tt \boxed{x  = 5}

Hence, the value of x is 5.

Answered by Sharad001
61

Question :-

 \sf{ log_{x} \bigg(  log_{4} \big(  log_{x}(5 {x}^{2} + 4 {x}^{3}  )  \big)   \bigg)  = 0} \\

Answer :-

→ x = 5

Solution :-

According to the question,

 \sf{ log_{x} \bigg(  log_{4} \big(  log_{x}(5 {x}^{2} + 4 {x}^{3}  )  \big)   \bigg)  = 0} \\ \:  \\  \because \sf{ log_{n}(s)  = p \:  \rightarrow \: s =  {n}^{p} } \\ \therefore  \\  \rightarrow \sf{ log_{4} \bigg(  log_{x}(5 {x}^{2} + 4 {x}^{3}  )  \bigg)   \:  =  {x}^{0} } \\  \\  \rightarrow \sf{ log_{4} \bigg(  log_{x}(5 {x}^{2} + 4 {x}^{3}  )  \bigg)   \:  = 1} \\  \\  \rightarrow \sf{  log_{x}(5 {x}^{2} + 4 {x}^{3}  )   =  {4}^{1} } \\  \\  \rightarrow \sf{5 {x}^{2}  + 4 {x}^{3}  =  {x}^{4} } \\  \\  \rightarrow \sf{  {x}^{4}  - 4 {x}^{3}  - 5 {x}^{2}  = 0} \\  \\  \rightarrow \sf{ {x}^{2} ( {x}^{2}  - 4x - 5) = 0} \\  \\   \star  \: \text{case \: (1)} \\  \implies \boxed{  \sf{x}  = 0 }\\  \:  \\  \star  \: \text{case \: (2)} \\  \\  \implies \sf{  {x}^{2}  - 4x - 5 = 0} \\  \\  \implies \sf{ {x}^{2}  - 5x + x - 5 = 0} \\  \\  \implies \sf{x(x - 5) + 1(x - 5) = 0} \\  \\  \implies \sf{ (x - 5)(x + 1) = 0} \\  \\  \rightarrow \boxed{ \sf{x \:  = 5 \: or \:  - 1}}

But here negative base of log is not defined therefore x = 5

___________________

Similar questions