Math, asked by alok3475, 1 month ago

Please answer my question .
Don't Spam it is for class 11
All steps are needed​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

1\: , \:\log_{9}( {3}^{1 - x} + 2 ) \: ,\:  \log_{3}(4. {3}^{x} - 1 ) are in A.P.

So,

2 \log_{9}( {3}^{1 - x} + 2 )  =    \log_{3}(4. {3}^{x} - 1 )  + 1 \\

 \implies \: 2 \log_{9}( {3}^{1 - x} + 2 )  =    \log_{3}(4. {3}^{x} - 1 )  +   \log_{3}(3)  \\

 \implies \: 2 \log_{ {3}^{2} }( {3}^{1 - x} + 2 )  =    \log_{3} \{3(4. {3}^{x} - 1 ) \}  \\

 \implies \: 2 \times  \frac{1}{2}  \log_{ 3 }( {3}^{1 - x} + 2 )  =    \log_{3} \{4. {3}^{x + 1} - 3\}  \\

 \implies \:\log_{ 3 }( {3}^{1 - x} + 2 )  =    \log_{3} \{4. {3}^{x + 1} - 3\}  \\

 \implies \:( {3}^{1 - x} + 2 )  =    (4. {3}^{x + 1} - 3) \\

 \implies \:  \frac{3}{ {3}^{x} } + 2  =   12( {3}^{x}) - 3\\

 \implies \:  \frac{3}{ {3}^{x} } =   12( {3}^{x}) -5\\

 \implies \:  3=   12( {3}^{x})({3}^{x})-5( {3}^{x} )\\

 \implies \:    12( {3}^{x})^{2} -5( {3}^{x} ) - 3 = 0\\

 \implies \:    12( {3}^{x})^{2} -9( {3}^{x} ) + 4( {3}^{x})  - 3 = 0\\

 \implies \:    3( {3}^{x})  \{4 ( {3}^{x}) -3 \} + 1 \{4( {3}^{x})  - 3  \}= 0\\

 \implies \:     \{3( {3}^{x})  + 1 \} \{4 ( {3}^{x}) -3 \}= 0\\

 \implies \:    3( {3}^{x})  + 1  = 0 \:  \:  or \:  \: 4 ( {3}^{x}) -3 = 0\\

 \implies \:    {3}^{x}   =  -  \frac{1}{3}  \:  \:  or \:  \: {3}^{x} =  \frac{3}{4} \\

Since, exponential function is always positive, so, it can't take negative values..

So,

 {3}^{x}  =  \frac{3}{4}  \\

 \implies  \log_{3}(  {3}^{x})  =    \log_{3} \bigg( \frac{3}{4}  \bigg)  \\

 \implies  x\log_{3}( 3)  =    \log_{3} \bigg( \frac{3}{4}  \bigg)  \\

 \implies  x  =    1 - \log_{3} ( 4)  \\

 \sf{\huge{\mathbb{PROPERTY\:\:USED:}}}

   \large\dagger \:   \log_{ {a}^{n} }(b) =  \frac{1}{n}   \log_{a}(b)   \\

   \large\dagger \:   \log_{ a }(b)  ^{n} =  n  \log_{a}(b)   \\

   \large\dagger \:   \log_{ a }(b)  +    \log_{a}(c)  =   \log_{a}(bc)   \\

   \large\dagger \:   \log_{ a }(b)   -    \log_{a}(c)  =   \log_{a} \bigg( \frac{b}{c}  \bigg)   \\

Similar questions