Physics, asked by Anonymous, 1 month ago

{\large{\underline{\purple{\underline{\pmb{\sf{Hola \:  Everyone ...}}}}}}}

{ \blue{ \bigstar \: { \underline{ \purple{ \underline{ \pmb{ \sf{A  \: physics \:  question... }}}}}}}}

★ Qᥙเᤁᤁ :

➽ A force F = ( 2 + x ) acts on a particle in x-direction where F is in newton and x in meter.Find the work done by this force during a displacement from x = 1.0 m to x = 2.0 m

{ \blue{ \bigstar \: { \underline{ \purple{ \underline{ \pmb{ \sf{Information\: Related \: to \: the \: question ... }}}}}}}}

✰ Cᥣᥲss - 9th
✰ Ꮪᥙbjᥱᥴt - ⅌ᖾყ⳽เᥴ⳽
✰ Cᖾᥲρtᥱɾ - Work ⅌oᥕᥱr ᥲᥒd Eᥒᥱrgყ

Ꭱᥙᥣꫀ᥉:

✎⃞    Ɲꪮ Ꮪρᥲm ^^"

✎⃞    Ɲꪮ Coρყ ⅌ᥲstᥱ :)

––––––––––––––––

☆ Aᥣᥣ thᥱ bᥱst
☆ Thanks In advance : ᥎

Answers

Answered by amoghnasa
6

Work done = F.x

F.x= (2+x)x = 2x+x²

at x= 1 , W= 2(1)+1² = 3J

at x= 2, W = 2(2)+2² = 8 J

Net work done = 8-3 = 5J

You can ask me questions directly

Answered by Anonymous
31

 { \maltese \:  \:  \: { \underline{ \purple{ \underline{ \pmb{ \bf{Given \: that : }}}}}}}

✰ A force F = ( 2 + x ) acts on a particle in x-direction where F is in newton and x in m

 \:  { \maltese \:  \:  \: { \underline{ \purple{ \underline{ \pmb{ \bf{To \:  Find : }}}}}}}

✰ Find the work done by this force during a displacement from x = 1.0 m to x = 2.0 m

 \:  { \maltese \:  \:  \: { \underline{ \purple{ \underline{ \pmb{ \bf{ Required  \: Solution : }}}}}}}

➽ The work done by the force during the given displacement is 3.5 joules

 \:  { \maltese \:  \:  \: { \underline{ \purple{ \underline{ \pmb{ \bf{Full \:  Solution  : }}}}}}}

➤ Here in this question we have been stated that a force F which is equal to 2 + x acts on a particle in the x - direction where F is in newton and x in meter.

✰ Now, we have been asked that we should find the work done during the displacement from x = 1.0 m to x = 2.0 m

Now We know that :

The force is variable and that we shall find the work in small displacement x to x + dx and then integrate it to find the work done the by force is dW = F dx = ( x + 2 ) dx

So, the work done here in the given displacement id dw

The work done due to a variable force is given by :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \footnotesize{\bullet \: { \underline{ \boxed{ \bf{ W = \int \limits ^{r_{2}}_{r_1}dW =  \int \limits ^{r_{2}}_{r_1}  F . \:  dx  \:  \: }}}}}}

Here :

  • W Stands dor Work done
  • R₁ is 1.0 m
  • R₂ is 2.0 m
  • F is 2 + x

Integrating We Get :

 :  \implies{\bf{ W = \int \limits ^{2.0}_{1.0}dW =  \int \limits ^{2.0}_{1.0}  F . \:  dx  }} \\  \\  \\  :  \implies{\bf{ W = \int \limits ^{2.0}_{1.0}dW =  \int \limits ^{2.0}_{1.0}  F . \:  dx  }}  \\  \\  \\  :  \implies{\bf{ W =  \bigg[  \frac{ {x}^{2} }{2} + 2x \bigg ] {}^{ {}^{ {}^{ {}^{ {}^{2} } } } }  }} \\  \\  \\  :  \implies{\bf{W =  \bigg[  \frac{{2}^{2} }{2}  + 2(2) \bigg] }} \\  \\  \\ :  \implies{\bf{  W =  \frac{ \cancel4}{ \cancel2} + 4 -  \bigg[  \frac{1}{2}  + 2 \bigg]}} \\  \\  \\  :  \implies{\bf{ W = 2 + 4 -  \frac{1}{2}  - 2}} \\  \\  \\  :  \implies{\bf{ W =6 - 2 -  \frac{1}{2} }} \\  \\  \\  :  \implies{ \purple{ \underline{ \boxed{ \pmb{\bf{ W = 3.5 \: Joules}}}}}}

 \:  { \maltese \:  \:  \: { \underline{ \purple{ \underline{ \pmb{ \bf{Therefore : }}}}}}}

➽ The work done by the force in the given displacement is 3.5 Joules

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions