Math, asked by radheysriram, 30 days ago

Please answer.NO SPAM​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

 \frac{m {x}^{2}  + 3x + 4}{ {x}^{2}  + 2x + 2}  < 5 \\

  \implies \: \frac{m {x}^{2}  + 3x + 4}{ {x}^{2}  + 2x + 2} -   5 < 0 \\

  \implies \: \frac{(m {x}^{2}  + 3x + 4) - 5( {x}^{2} + 2x + 2) }{ {x}^{2}  + 2x + 2} < 0 \\

  \implies \: \frac{(m  - 5){x}^{2}   - 7x  - 6}{ {x}^{2}  + 2x + 2} < 0 \\

Now, in the denominator,

the quadratic equation x²+2x+2 is always positive, as its a>0 and D<0

So, numerator's quadratic equation must be negative,

 m - 5 &lt; 0 \:  \: and \:  \: ( - 7) ^{2}  - 4.(m - 5).( - 6) &lt; 0 \\

  \implies \: m &lt; 5 \:  \: and \:  \: 49   + 24(m - 5) &lt; 0 \\

  \implies \: m &lt; 5 \:  \: and \:  \: 49   + 24m - 120 &lt; 0 \\

  \implies \: m &lt; 5 \:  \: and \:  \: 24m - 71&lt; 0 \\

  \implies \: m &lt; 5 \:  \: and \:  \: m &lt;  \frac{71}{24} \\

Hence,  m &lt; \frac{71}{24}\\

Similar questions