please answer soon.......
Attachments:
Answers
Answered by
11
➠ AnSwer :-
We may write, -4a = {-2(a + b)} + {-2(a - b)}
Also,
➝ {-2(a + b)} x {-2(a - b)} = 4(a² - b²).
➝4x² - 4ax + (a² - b²) = 0
➝4x²-2(a+b)x -2(a - b)x+(a² - b²) = 0
➝2x {2x - (a + b)} - (a - b){2x - (a+b)} = 0
➝{2x - (a + b)}×{2x - (a - b)} = 0
➝2x - (a + b) = 0 or 2x - (a - b) = 0
➝X = (a+b)/2 or x = (a-b)/2
Hence, (a+b)/2and(a-b)/2 are the roots of the given equation.
Answered by
2
4x^2-4ax+ (a^2-b^2)=0
a=4
b=-4a
c=a^2-b^2
b^2-4ac=(-4a)^2-4*4*(a^2-b^2)
=16a^2-16a^2+16b^2
=16b^2 =4b
= -b+- root b^2-4ac/2a
=+4a+4b/8 =+4a-4b/8
=4(a+b)/8 = 4(a-b)/8
=a+b/2 =a-b/2
Therefore value of x is a+b/2 and a-b/2
Similar questions
Science,
4 months ago
Physics,
4 months ago
Science,
9 months ago
English,
1 year ago
India Languages,
1 year ago